IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i1p185-210.html
   My bibliography  Save this article

Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation

Author

Listed:
  • Ninna Vihrs
  • Jesper Møller
  • Alan E. Gelfand

Abstract

In this article, we propose a doubly stochastic spatial point process model with both aggregation and repulsion. This model combines the ideas behind Strauss processes and log Gaussian Cox processes. The likelihood for this model is not expressible in closed form but it is easy to simulate realizations under the model. We therefore explain how to use approximate Bayesian computation (ABC) to carry out statistical inference for this model. We suggest a method for model validation based on posterior predictions and global envelopes. We illustrate the ABC procedure and model validation approach using both simulated point patterns and a real data example.

Suggested Citation

  • Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:185-210
    DOI: 10.1111/sjos.12509
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12509
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    2. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    3. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    4. Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
    5. Joshua Goldstein & Murali Haran & Ivan Simeonov & John Fricks & Francesca Chiaromonte, 2015. "An attraction–repulsion point process model for respiratory syncytial virus infections," Biometrics, The International Biometric Society, vol. 71(2), pages 376-385, June.
    6. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    7. Soubeyrand Samuel & Guiton François & Klein Etienne K. & Carpentier Florence, 2013. "Approximate Bayesian computation with functional statistics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 17-37, March.
    8. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    9. M. N. M. van Lieshout & A. J. Baddeley, 1996. "A nonparametric measure of spatial interaction in point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 50(3), pages 344-361, November.
    10. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).
    11. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    2. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    3. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    5. Anthony Ebert & Ritabrata Dutta & Kerrie Mengersen & Antonietta Mira & Fabrizio Ruggeri & Paul Wu, 2021. "Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 770-792, June.
    6. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    7. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    8. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    9. Soubeyrand, Samuel & Haon-Lasportes, Emilie, 2015. "Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 84-92.
    10. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    11. Lorenzo Pacchiardi & Pierre Künzli & Marcel Schöngens & Bastien Chopard & Ritabrata Dutta, 2021. "Distance-learning For Approximate Bayesian Computation To Model a Volcanic Eruption," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 288-317, May.
    12. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "The tenets of indirect inference in Bayesian models," OSF Preprints enzgs, Center for Open Science.
    13. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    14. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    15. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    16. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    17. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    18. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    19. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    20. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:185-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.