Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0285836
Download full text from publisher
References listed on IDEAS
- Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
- Wentao Li & Paul Fearnhead, 2018. "On the asymptotic efficiency of approximate Bayesian computation estimators," Biometrika, Biometrika Trust, vol. 105(2), pages 285-299.
- David T. Frazier & Christian P. Robert & Judith Rousseau, 2020. "Model misspecification in approximate Bayesian computation: consequences and diagnostics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(2), pages 421-444, April.
- Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
- D T Frazier & G M Martin & C P Robert & J Rousseau, 2018. "Asymptotic properties of approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 105(3), pages 593-607.
- Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
- Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
- Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
- Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019.
"Approximate Bayesian forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
- David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Brendan P.M. McCabe, 2018. "Approximate Bayesian forecasting," Monash Econometrics and Business Statistics Working Papers 2/18, Monash University, Department of Econometrics and Business Statistics.
- Weerasinghe, Chaya & Loaiza-Maya, Rubén & Martin, Gael M. & Frazier, David T., 2025. "ABC-based forecasting in misspecified state space models," International Journal of Forecasting, Elsevier, vol. 41(1), pages 270-289.
- Chaya Weerasinghe & Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2023. "ABC-based Forecasting in State Space Models," Monash Econometrics and Business Statistics Working Papers 12/23, Monash University, Department of Econometrics and Business Statistics.
- Florian Maire & Nial Friel & Pierre ALQUIER, 2017. "Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets," Working Papers 2017-40, Center for Research in Economics and Statistics.
- Baey, Charlotte & Smith, Henrik G. & Rundlöf, Maj & Olsson, Ola & Clough, Yann & Sahlin, Ullrika, 2023. "Calibration of a bumble bee foraging model using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 477(C).
- Christian P. Robert, 2013. "Bayesian Computational Tools," Working Papers 2013-45, Center for Research in Economics and Statistics.
- Buzbas, Erkan O. & Rosenberg, Noah A., 2015. "AABC: Approximate approximate Bayesian computation for inference in population-genetic models," Theoretical Population Biology, Elsevier, vol. 99(C), pages 31-42.
- Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
- Soubeyrand Samuel & Carpentier Florence & Guiton François & Klein Etienne K., 2013. "Approximate Bayesian computation with functional statistics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 17-37, March.
- Creel, Michael & Kristensen, Dennis, 2016.
"On selection of statistics for approximate Bayesian computing (or the method of simulated moments),"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
- Michael Creel & Dennis Kristensen, 2015. "On Selection of Statistics for Approximate Bayesian Computing or the Method of Simulated Moments," UFAE and IAE Working Papers 950.15, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 27 Feb 2015.
- Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
- Kristin McCullough & Tatiana Dmitrieva & Nader Ebrahimi, 2022. "New approximate Bayesian computation algorithm for censored data," Computational Statistics, Springer, vol. 37(3), pages 1369-1397, July.
- Michael Stocks & Mathieu Siol & Martin Lascoux & Stéphane De Mita, 2014. "Amount of Information Needed for Model Choice in Approximate Bayesian Computation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
- VanDerHorn, Eric & Mahadevan, Sankaran, 2018. "Bayesian model updating with summarized statistical and reliability data," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 12-24.
- Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0285836. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.