IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v161y2021ics0167947321000797.html
   My bibliography  Save this article

Testing the first-order separability hypothesis for spatio-temporal point patterns

Author

Listed:
  • Ghorbani, Mohammad
  • Vafaei, Nafiseh
  • Dvořák, Jiří
  • Myllymäki, Mari

Abstract

First-order separability of a spatio-temporal point process plays a fundamental role in the analysis of spatio-temporal point pattern data. While it is often a convenient assumption that simplifies the analysis greatly, existing non-separable structures should be accounted for in the model construction. Three different tests are proposed to investigate this hypothesis as a step of preliminary data analysis. The first two tests are exact or asymptotically exact for Poisson processes. The first test based on permutations and global envelopes allows one to detect at which spatial and temporal locations or lags the data deviate from the null hypothesis. The second test is a simple and computationally cheap χ2-test. The third test is based on stochastic reconstruction method and can be generally applied for non-Poisson processes. The performance of the first two tests is studied in a simulation study for Poisson and non-Poisson models. The third test is applied to the real data of the UK 2001 epidemic foot and mouth disease.1

Suggested Citation

  • Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000797
    DOI: 10.1016/j.csda.2021.107245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000797
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    2. Julian Besag & Peter J. Diggle, 1977. "Simple Monte Carlo Tests for Spatial Pattern," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 327-333, November.
    3. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    4. Jonatan A. González & Ute Hahn & Jorge Mateu, 2020. "Analysis of tornado reports through replicated spatiotemporal point patterns," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(1), pages 3-23, January.
    5. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    6. Schlather, Martin & Malinowski, Alexander & Menck, Peter J. & Oesting, Marco & Strokorb, Kirstin, 2015. "Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i08).
    7. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    8. Tscheschel, A. & Stoyan, D., 2006. "Statistical reconstruction of random point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 859-871, November.
    9. Peter J. Diggle & Irene Kaimi & Rosa Abellana, 2010. "Partial-Likelihood Analysis of Spatio-Temporal Point-Process Data," Biometrics, The International Biometric Society, vol. 66(2), pages 347-354, June.
    10. Jesper Møller & Mohammad Ghorbani, 2012. "Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(4), pages 472-491, November.
    11. Naveen N. Narisetty & Vijayan N. Nair, 2016. "Extremal Depth for Functional Data and Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1705-1714, October.
    12. Frederic Paik Schoenberg, 2004. "Testing Separability in Spatial-Temporal Marked Point Processes," Biometrics, The International Biometric Society, vol. 60(2), pages 471-481, June.
    13. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    14. Isabel Fuentes‐Santos & Wenceslao González‐Manteiga & Jorge Mateu, 2018. "A first‐order, ratio‐based nonparametric separability test for spatiotemporal point processes," Environmetrics, John Wiley & Sons, Ltd., vol. 29(1), February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    2. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    3. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    4. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    6. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    7. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    8. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    9. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.
    10. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    11. Arbia, G. & Espa, G. & Giuliani, D. & Mazzitelli, A., 2012. "Clusters of firms in an inhomogeneous space: The high-tech industries in Milan," Economic Modelling, Elsevier, vol. 29(1), pages 3-11.
    12. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    13. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    14. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    15. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    16. C. Comas & F. J. Rodriguez-Cortes & J. Mateu, 2015. "Second-order analysis of anisotropic spatiotemporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 49-66, February.
    17. Diquigiovanni, Jacopo & Fontana, Matteo & Vantini, Simone, 2022. "Conformal prediction bands for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    19. Eric Marcon & Florence Puech, 2009. "Generalizing Ripley's K function to inhomogeneous populations," Working Papers halshs-00372631, HAL.
    20. Mohammad Ghorbani & Ottmar Cronie & Jorge Mateu & Jun Yu, 2021. "Functional marked point processes: a natural structure to unify spatio-temporal frameworks and to analyse dependent functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 529-568, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:161:y:2021:i:c:s0167947321000797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.