IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v68y2014i3p225-249.html
   My bibliography  Save this article

Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity

Author

Listed:
  • Ondřej Šedivý
  • Antti Penttinen

Abstract

type="main" xml:id="stan12030-abs-0001"> Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whether this advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstrated that under mild assumptions on the dependence of the intensity on covariates, this approach can provide better results than the classical nonparametric method based on local smoothing in the spatial domain. In comparison with the parametric pseudo-likelihood estimation, the nonparametric approach can be more accurate particularly when the dependence on covariates is weak or if there is uncertainty about the model or about the range of interactions. An important supplementary task is the dimension reduction of the covariate space. It is shown that the techniques based on the inverse regression, previously applied to Cox processes, are useful even when the interactions are present. © 2014 The Authors. Statistica Neerlandica © 2014 VVS.

Suggested Citation

  • Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
  • Handle: RePEc:bla:stanee:v:68:y:2014:i:3:p:225-249
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12030
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    3. Guan, Yongtao, 2008. "On Consistent Nonparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1238-1247.
    4. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    5. Jorge Mateu & Francisco Montes, 2001. "Pseudo-likelihood Inference for Gibbs Processes with Exponential Families through Generalized Linear Models," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 125-154, May.
    6. Adrian Baddeley & Jean-François Coeurjolly & Ege Rubak & Rasmus Waagepetersen, 2014. "Logistic regression for spatial Gibbs point processes," Biometrika, Biometrika Trust, vol. 101(2), pages 377-392.
    7. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    2. Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
    3. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    4. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    5. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    6. Eric Marcon & Florence Puech, 2009. "Generalizing Ripley's K function to inhomogeneous populations," Working Papers halshs-00372631, HAL.
    7. P. J. Diggle & V. Gómez-Rubio & P. E. Brown & A. G. Chetwynd & S. Gooding, 2007. "Second-Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data," Biometrics, The International Biometric Society, vol. 63(2), pages 550-557, June.
    8. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    9. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    10. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    11. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    12. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    13. Zhang, Tonglin & Mateu, Jorge, 2019. "Substationarity for spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 22-36.
    14. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    15. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    16. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    18. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    19. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    20. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:68:y:2014:i:3:p:225-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.