IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v2y2014i1p14n4.html
   My bibliography  Save this article

Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package

Author

Listed:
  • Decker Anna L.

    (University of California – Berkeley, Berkeley, CA 94704, USA)

  • Hubbard Alan

    (Division of Biostatistics, University of California – Berkeley, Berkeley, CA, USA)

  • Crespi Catherine M.

    (University of California – Los Angeles, Los Angeles, CA, USA)

  • Seto Edmund Y.W.

    (University of Washington – Seattle, Seattle, WA, 98195, USA)

  • Wang May C.

    (University of California – Los Angeles, Los Angeles, CA, USA)

Abstract

While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multivariable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice.

Suggested Citation

  • Decker Anna L. & Hubbard Alan & Crespi Catherine M. & Seto Edmund Y.W. & Wang May C., 2014. "Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package," Journal of Causal Inference, De Gruyter, vol. 2(1), pages 95-108, March.
  • Handle: RePEc:bpj:causin:v:2:y:2014:i:1:p:14:n:4
    DOI: 10.1515/jci-2013-0025
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2013-0025
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2013-0025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    2. Morrison, J.A., 1992. "Obesity and cardiovascular disease risk factors in Black and White girls: The NHLBI Growth and Health Study," American Journal of Public Health, American Public Health Association, vol. 82(12), pages 1613-1620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    3. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    4. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.
    5. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    6. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    7. Everding, Jakob & Marcus, Jan, 2020. "The effect of unemployment on the smoking behavior of couples," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 29(2), pages 154-170.
    8. Li Liang & Greene Tom, 2013. "A Weighting Analogue to Pair Matching in Propensity Score Analysis," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 215-234, July.
    9. McFarland, Michael J. & Geller, Amanda & McFarland, Cheryl, 2019. "Police contact and health among urban adolescents: The role of perceived injustice," Social Science & Medicine, Elsevier, vol. 238(C), pages 1-1.
    10. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    11. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    12. Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.
    13. Zhang, Yingheng & Li, Haojie & Ren, Gang, 2025. "Analysing the role of traffic volume as mediator in transport policy evaluation with causal mediation analysis and targeted learning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
    14. Delprato, Marcos & Akyeampong, Kwame, 2019. "The effect of working on students’ learning in Latin America: Evidence from the learning survey TERCE," International Journal of Educational Development, Elsevier, vol. 70(C), pages 1-1.
    15. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    16. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    17. Elder, Todd & Jepsen, Christopher, 2014. "Are Catholic primary schools more effective than public primary schools?," Journal of Urban Economics, Elsevier, vol. 80(C), pages 28-38.
    18. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.
    19. Decker, Simon & Schmitz, Hendrik, 2016. "Health shocks and risk aversion," Journal of Health Economics, Elsevier, vol. 50(C), pages 156-170.
    20. Jiafeng Chen & David M. Ritzwoller, 2021. "Semiparametric Estimation of Long-Term Treatment Effects," Papers 2107.14405, arXiv.org, revised Aug 2023.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:2:y:2014:i:1:p:14:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.