IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i2p321-348.html
   My bibliography  Save this article

Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models

Author

Listed:
  • Søren Johansen
  • Bent Nielsen

Abstract

No abstract is available for this item.

Suggested Citation

  • Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:321-348
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12174
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    2. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    3. Kilian, Lutz & Demiroglu, Ufuk, 2000. "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 40-50, January.
    4. Liese, F. & Vajda, I., 1994. "Consistency of M-Estimates in General Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 93-114, July.
    5. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," Economics Papers 2014-W04, Economics Group, Nuffield College, University of Oxford.
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Kathryn Graddy, 1995. "Testing for Imperfect Competition at the Fulton Fish Market," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 75-92, Spring.
    8. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    9. Kathryn Graddy, 2006. "Markets: The Fulton Fish Market," Journal of Economic Perspectives, American Economic Association, vol. 20(2), pages 207-220, Spring.
    10. Chen, X. R. & Wu, Y. H., 1988. "Strong consistency of M-estimates in linear models," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 116-130, October.
    11. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    12. Bent Nielsen & Soren Johansen, 2010. "Discussion of The Forward Search: Theory and Data Analysis," Economics Series Working Papers 2010-W02, University of Oxford, Department of Economics.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    2. Donatella Baiardi & Claudio Morana, 2020. "Climate change awareness: Empirical evidence for the European Union," Working Papers 426, University of Milano-Bicocca, Department of Economics, revised Feb 2021.
    3. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    4. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, Open Access Journal, vol. 8(2), pages 1-24, May.
    5. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    6. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "The analysis of marked and weighted empirical processes of estimated residuals," Economics Papers 2019-W03, Economics Group, Nuffield College, University of Oxford.
    7. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," CREATES Research Papers 2019-12, Department of Economics and Business Economics, Aarhus University.
    8. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    9. Jennifer Castle & David Hendry, 2016. "Policy Analysis, Forediction, and Forecast Failure," Economics Series Working Papers 809, University of Oxford, Department of Economics.
    10. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    11. Vanessa Berenguer Rico & Bent Nielsen, 2017. "Marked and Weighted Empirical Processes of Residuals with Applications to Robust Regressions," Economics Series Working Papers 841, University of Oxford, Department of Economics.
    12. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    13. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    14. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, Open Access Journal, vol. 5(3), pages 1-27, September.
    15. Corbellini, Aldo & Magnani, Marco & Morelli, Gianluca, 2021. "Labor market analysis through transformations and robust multivariate models," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    16. Anthony C. Atkinson & Andrea Cerioli & Marco Riani, 2016. "Discussion of ‘Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models’ by Johansen and Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 349-352, June.
    17. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-24, January.
    18. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Robust Discovery of Regression Models," Economics Papers 2020-W04, Economics Group, Nuffield College, University of Oxford.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Johansen & Lukasz Gatarek, 2014. "Optimal hedging with the cointegrated vector autoregressive model," CREATES Research Papers 2014-40, Department of Economics and Business Economics, Aarhus University.
    2. Søren Johansen & Bent Nielsen, 2014. "Outlier detection algorithms for least squares time series regression," Economics Papers 2014-W04, Economics Group, Nuffield College, University of Oxford.
    3. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    4. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    5. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    6. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Robust Discovery of Regression Models," Economics Papers 2020-W04, Economics Group, Nuffield College, University of Oxford.
    7. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    8. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    9. Josh R. Stillwagon, 2015. "TIPS and the VIX: Non-linear Spillovers from Financial Panic to Breakeven Inflation," Working Papers 1502, Trinity College, Department of Economics.
    10. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    11. Vassili Bazinas & Bent Nielsen, 2015. "Causal transmission in reduced-form models," Economics Papers 2015-W07, Economics Group, Nuffield College, University of Oxford.
    12. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-24, January.
    13. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    14. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    15. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    16. David F. Hendry, 2013. "Econometric Modelling: The ‘Consumption Function’ In Retrospect," Scottish Journal of Political Economy, Scottish Economic Society, vol. 60(5), pages 495-522, November.
    17. Amir Kia & Norman Gardner, 2009. "Analyzing the Fiscal Process under a Stochastic Environment: Evidence from Egypt," Working Papers 475, Economic Research Forum, revised Mar 2009.
    18. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    19. Amir Kia, 2006. "Deficits, Debt Financing, Monetary Policy and Inflation in Developing Countries: Internal or External Factors? Evidence from Iran," Carleton Economic Papers 06-03, Carleton University, Department of Economics, revised Nov 2006.
    20. Amir Kia, 2005. "Sustainability of the Fiscal Process in Developing Countries- Egypt, Iran and Turkey: A Multicointegration Approach – revised version: Fiscal Sustainability in Emerging Countries: Evidence from Iran a," Carleton Economic Papers 05-08, Carleton University, Department of Economics, revised Nov 2008.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:321-348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.