IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v68y2006is1p797-812.html
   My bibliography  Save this article

Simulation-based Finite Sample Linearity Test against Smooth Transition Models

Author

Listed:
  • Andrés González
  • Timo Teräsvirta

Abstract

In this paper, we use Monte Carlo (MC) testing techniques for testing linearity against smooth transition models. The MC approach allows us to introduce a new test that differs in two respects from the tests existing in the literature. First, the test is exact in the sense that the probability of rejecting the null when it is true is always less than or equal to the nominal size of the test. Secondly, the test is not based on an auxiliary regression obtained by replacing the model under the alternative by approximations based on a Taylor expansion. We also apply MC testing methods for size correcting the test proposed by Luukkonen, Saikkonen and Teräsvirta ("Biometrika", Vol. 75, 1988, p. 491). The results show that the power loss implied by the auxiliary regression-based test is non-existent compared with a supremum-based test but is more substantial when compared with the three other tests under consideration. Copyright 2006 Blackwell Publishing Ltd.

Suggested Citation

  • Andrés González & Timo Teräsvirta, 2006. "Simulation-based Finite Sample Linearity Test against Smooth Transition Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 797-812, December.
  • Handle: RePEc:bla:obuest:v:68:y:2006:i:s1:p:797-812
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1468-0084.2006.00457.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    4. Andrés González & Timo Teräsvirta & Dick van Dijk & Yukai Yang, 1910. "Panel Smooth Transition Regression Models," CREATES Research Papers 2017-36, Department of Economics and Business Economics, Aarhus University.
    5. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    6. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    7. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    8. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    9. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    10. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    11. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    12. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fracasso, Andrea & Vittucci Marzetti, Giuseppe, 2015. "International trade and R&D spillovers," Journal of International Economics, Elsevier, vol. 96(1), pages 138-149.
    2. Waseem Khadim & Saddam Ilyas & Bilal Mehmood, 2016. "Of Inflation and Growth Nexus in BRIMC Economies," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 4(1), pages 32-45, January.
    3. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2014. "International R&D Spillovers, Absorptive Capacity and Relative Backwardness: A Panel Smooth Transition Regression Model," International Economic Journal, Taylor & Francis Journals, vol. 28(1), pages 137-160, March.
    4. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    5. Giulio Cainelli & Andrea Fracasso & Giuseppe Vittucci Marzetti, 2015. "Spatial agglomeration and productivity in Italy: A panel smooth transition regression approach," Papers in Regional Science, Wiley Blackwell, vol. 94, pages 39-67, November.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:68:y:2006:i:s1:p:797-812. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.