IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v66y2004i3p399-424.html
   My bibliography  Save this article

A Comparison of Johansen's, Bierens' and the Subspace Algorithm Method for Cointegration Analysis

Author

Listed:
  • Martin Wagner

Abstract

The methods listed in the title are compared by means of a simulation study and a real world application. The aspects compared via simulations are the performance of the tests for the cointegrating rank and the "quality" of the estimated cointegrating space. The subspace algorithm method, formulated in the state space framework and thus applicable for vector autoregressive moving average (VARMA) processes, performs at least comparably to the Johansen method. Both the Johansen procedure and the subspace algorithm cointegration analysis perform significantly better than Bierens' method. The real-world application is an investigation of the long-run properties of the one-sector neoclassical growth model for Austria. The results do not fully support the implications of the model with respect to cointegration. Furthermore, the results differ greatly between the different methods. The amount of variability depends strongly upon the number of variables considered and huge differences occur for the full system with six variables. Therefore we conclude that the results of such applications with about five or six variables and 100 observations, which are typical in the applied literature, should possibly be interpreted with more caution than is commonly done. Copyright 2004 Blackwell Publishing Ltd.

Suggested Citation

  • Martin Wagner, 2004. "A Comparison of Johansen's, Bierens' and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
  • Handle: RePEc:bla:obuest:v:66:y:2004:i:3:p:399-424
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=obes&volume=66&issue=3&year=2004&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    2. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    3. Kunst, Robert & Neusser, Klaus, 1990. "Cointegration in a Macroeconomic System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(4), pages 351-365, Oct.-Dec..
    4. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    5. Seo, Byeongseon, 1998. "Tests For Structural Change In Cointegrated Systems," Econometric Theory, Cambridge University Press, vol. 14(02), pages 222-259, April.
    6. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    7. Ripatti, Antti & Saikkonen, Pentti, 1998. "Cointegrated vector autoregressive processes with continuous structural changes," Research Discussion Papers 29/1998, Bank of Finland.
    8. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(01), pages 1-27, March.
    9. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    10. H. Peter Boswijk & Andre Lucas & Nick Taylor, 1999. "A Comparison of Parametric, Semi-nonparametric, Adaptive, and Nonparametric Cointegration Tests," Tinbergen Institute Discussion Papers 99-012/4, Tinbergen Institute.
    11. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    12. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    13. repec:cup:etheor:v:8:y:1992:i:1:p:1-27 is not listed on IDEAS
    14. Wagner, Martin, 1999. "VAR Cointegration in VARMA Models," Economics Series 65, Institute for Advanced Studies.
    15. Saikkonen, Pentti & Luukkonen, Ritva, 1997. "Testing cointegration in infinite order vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 93-126, November.
    16. Neusser, Klaus, 1991. "Testing the long-run implications of the neoclassical growth model," Journal of Monetary Economics, Elsevier, vol. 27(1), pages 3-37, February.
    17. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    18. Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Wagner, 2010. "Cointegration analysis with state space models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 273-305, September.
    2. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    3. Martin Wagner & Jaroslava Hlouskova, 2010. "The Performance of Panel Cointegration Methods: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 182-223, April.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E20 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:66:y:2004:i:3:p:399-424. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.