IDEAS home Printed from https://ideas.repec.org/p/ube/dpvwib/dp0308.html
   My bibliography  Save this paper

The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study

Author

Listed:
  • Dietmar Bauer
  • Martin Wagner

Abstract

This paper presents a simulation study that assesses the finite sample performance of the subspace algorithm cointegration analysis developed in Bauer und Wagner (2002b). The method is formulated in the state space framework, which is equivalent to the VARMA framework, in a sense made precise in the paper. This implies applicability to VARMA processes. The paper proposes and compares six different tests for the cointegrating rank. The simulations investigate four issues: the order estimation, the size performance of the proposed tests, the accuracy of the estimation of the cointegrating space and the forecasting performance. of the state space models estimated by the proposed method. The simulations are performed on a set of trivariate processes with cointegrating ranks ranging from zero to three as well as on processes of output dimension four and cointegrating rank two. We analyze the influence of the sample size on the results as well as the sensitivity of the results with respect to stable poles approaching the unit circle. All results are compared to benchmark results obtained by applying the Johansen procedure on VAR models fitted to the data. The simulations show advantages of subspace algorithm cointegration analysis for the small sample performance of the tests for the cointegrating rank in many cases. However, we find that the accuracy of the subspace algorithm based estimation of the cointegrating space is unsatisfactory for the four-dimensional simulated systems. The forecasting performance is grosso modo comparable to the results obtained by applying the Johansen methodology on VAR approximations, although for very small sample sizes the forecasts based on VAR approximations outperform the subspace forecasts. The appendix provides critical values for the test statistics

Suggested Citation

  • Dietmar Bauer & Martin Wagner, 2003. "The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study," Diskussionsschriften dp0308, Universitaet Bern, Departement Volkswirtschaft.
  • Handle: RePEc:ube:dpvwib:dp0308
    as

    Download full text from publisher

    File URL: http://www.vwl.unibe.ch/wp-content/uploads/papers/dp/dp0308.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    3. Phillips, Peter C B, 1995. "Fully Modified Least Squares and Vector Autoregression," Econometrica, Econometric Society, vol. 63(5), pages 1023-1078, September.
    4. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(01), pages 1-27, March.
    5. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    6. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    7. repec:cup:etheor:v:8:y:1992:i:1:p:1-27 is not listed on IDEAS
    8. Saikkonen, Pentti & Luukkonen, Ritva, 1997. "Testing cointegration in infinite order vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 93-126, November.
    9. Aoki, Masanao & Havenner, Arthur, 1989. "A method for approximate representation of vector-valued time series and its relation to two alternatives," Journal of Econometrics, Elsevier, vol. 42(2), pages 181-199, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens' and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    2. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    3. Martin Wagner & Jaroslava Hlouskova, 2010. "The Performance of Panel Cointegration Methods: Results from a Large Scale Simulation Study," Econometric Reviews, Taylor & Francis Journals, vol. 29(2), pages 182-223, April.
    4. Segismundo Izquierdo & Ces�reo Hern�ndez & Javier Pajares, 2005. "State Space Modelling of Cointegrated Systems using Subspace Algorithms," Econometrics 0509010, EconWPA, revised 07 Feb 2006.

    More about this item

    Keywords

    State space representation; cointegration; subspace algorithms; simulation study;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp0308. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Silvia Glusstein-Gerber). General contact details of provider: http://edirc.repec.org/data/vwibech.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.