IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v18y2008i4p519-543.html
   My bibliography  Save this article

An Equilibrium Guide To Designing Affine Pricing Models

Author

Listed:
  • Bjørn Eraker
  • Ivan Shaliastovich

Abstract

The paper examines equilibrium models based on Epstein–Zin preferences in a framework in which exogenous state variables follow affine jump diffusion processes. A main insight is that the equilibrium asset prices can be computed using a standard machinery of affine asset pricing theory by imposing parametric restrictions on market prices of risk, determined inside the model by preference and model parameters. An appealing characteristic of the general equilibrium setup is that the state variables have an intuitive and testable interpretation as driving the consumption and dividend dynamics. We present a detailed example where large shocks (jumps) in consumption volatility translate into negative jumps in equilibrium prices of the assets as agents demand a higher premium to compensate for higher risks. This endogenous “leverage effect,” which is purely an equilibrium outcome in the economy, leads to significant premiums for out‐of‐the‐money put options. Our model is thus able to produce an equilibrium “volatility smirk,” which realistically mimics that observed for index options.

Suggested Citation

  • Bjørn Eraker & Ivan Shaliastovich, 2008. "An Equilibrium Guide To Designing Affine Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 519-543, October.
  • Handle: RePEc:bla:mathfi:v:18:y:2008:i:4:p:519-543
    DOI: 10.1111/j.1467-9965.2008.00346.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2008.00346.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2008.00346.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    4. Jun Liu, 2005. "An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 131-164.
    5. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    6. TallariniJr., Thomas D., 2000. "Risk-sensitive real business cycles," Journal of Monetary Economics, Elsevier, vol. 45(3), pages 507-532, June.
    7. Campbell, John Y & Shiller, Robert J, 1988. " Stock Prices, Earnings, and Expected Dividends," Journal of Finance, American Finance Association, vol. 43(3), pages 661-676, July.
    8. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    9. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    10. Weil, Philippe, 1989. "The equity premium puzzle and the risk-free rate puzzle," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 401-421, November.
    11. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2005. "Can Standard Preferences Explain the Prices of out of the Money S&P 500 Put Options," NBER Working Papers 11861, National Bureau of Economic Research, Inc.
    12. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    13. Bansal, Ravi & Khatchatrian, Varoujan & Yaron, Amir, 2005. "Interpretable asset markets?," European Economic Review, Elsevier, vol. 49(3), pages 531-560, April.
    14. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, August.
    15. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    16. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    17. Campbell, John Y, 1993. "Intertemporal Asset Pricing without Consumption Data," American Economic Review, American Economic Association, vol. 83(3), pages 487-512, June.
    18. Schroder, Mark & Skiadas, Costis, 1999. "Optimal Consumption and Portfolio Selection with Stochastic Differential Utility," Journal of Economic Theory, Elsevier, vol. 89(1), pages 68-126, November.
    19. Knut K. Aase, 2002. "Equilibrium Pricing in the Presence of Cumulative Dividends Following a Diffusion," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 173-198, July.
    20. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    23. Ravi Bansal, 2007. "Long-run risks and financial markets," Review, Federal Reserve Bank of St. Louis, vol. 89(Jul), pages 283-300.
    24. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    25. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, April.
    26. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    27. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    28. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    29. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    30. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    2. Bjørn Eraker, 2008. "Affine General Equilibrium Models," Management Science, INFORMS, vol. 54(12), pages 2068-2080, December.
    3. Shaliastovich, Ivan, 2015. "Learning, confidence, and option prices," Journal of Econometrics, Elsevier, vol. 187(1), pages 18-42.
    4. Ruan, Xinfeng & Zhang, Jin E., 2018. "Equilibrium variance risk premium in a cost-free production economy," Journal of Economic Dynamics and Control, Elsevier, vol. 96(C), pages 42-60.
    5. Roche, Hervé, 2011. "Asset prices in an exchange economy when agents have heterogeneous homothetic recursive preferences and no risk free bond is available," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 80-96, January.
    6. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    7. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    9. Kraft, Holger & Seifried, Frank Thomas, 2014. "Stochastic differential utility as the continuous-time limit of recursive utility," Journal of Economic Theory, Elsevier, vol. 151(C), pages 528-550.
    10. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    11. Matthijs Breugem & Stefano Colonnello & Roberto Marfè & Francesca Zucchi, 2020. "Dynamic Equity Slope," Carlo Alberto Notebooks 626, Collegio Carlo Alberto.
      • Matthijs Breugem & Stefano Colonello & Roberto Marfè & Francesca Zucchi, 2020. "Dynamic Equity Slope," Working Papers 2020:21, Department of Economics, University of Venice "Ca' Foscari".
    12. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    13. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    14. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    15. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    17. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    18. Max Gillman & Michal Kejak & Michal Pakoš, 2015. "Learning about Rare Disasters: Implications For Consumption and Asset Prices," Review of Finance, European Finance Association, vol. 19(3), pages 1053-1104.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    20. Garcia, Rene & Renault, Eric & Semenov, Andrei, 2006. "Disentangling risk aversion and intertemporal substitution through a reference level," Finance Research Letters, Elsevier, vol. 3(3), pages 181-193, September.
    21. Sang Byung Seo & Jessica A. Wachter, 2013. "Option Prices in a Model with Stochastic Disaster Risk," NBER Working Papers 19611, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:18:y:2008:i:4:p:519-543. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.