IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v35y2014i6p491-516.html
   My bibliography  Save this article

Efficient Method Of Moments Estimators For Integer Time Series Models

Author

Listed:
  • Vance L. Martin
  • Andrew R. Tremayne
  • Robert C. Jung

Abstract

type="main" xml:id="jtsa12078-abs-0001"> The parameters of integer autoregressive models with Poisson, or negative binomial innovations can be estimated by maximum likelihood where the prediction error decomposition, together with convolution methods, is used to write down the likelihood function. When a moving average component is introduced this is not the case. To address this problem an efficient method of moment estimator is proposed where the estimated standard errors for the parameters are obtained using subsampling methods. The small sample properties of the estimator are investigated using Monte Carlo methods, while the approach is demonstrated using two well-known examples from the time series literature.

Suggested Citation

  • Vance L. Martin & Andrew R. Tremayne & Robert C. Jung, 2014. "Efficient Method Of Moments Estimators For Integer Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 491-516, November.
  • Handle: RePEc:bla:jtsera:v:35:y:2014:i:6:p:491-516
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12078
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    2. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    3. Freeland, R. K. & McCabe, B. P. M., 2004. "Forecasting discrete valued low count time series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 427-434.
    4. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    5. Brendan P. M. McCabe & Gael M. Martin & David Harris, 2011. "Efficient probabilistic forecasts for counts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 253-272, March.
    6. Feike C. Drost & Ramon van den Akker & Bas J. M. Werker, 2009. "Efficient estimation of auto‐regression parameters and innovation distributions for semiparametric integer‐valued AR(p) models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 467-485, April.
    7. Chen, Willa W. & Deo, Rohit S., 2006. "Estimation of mis-specified long memory models," Journal of Econometrics, Elsevier, vol. 134(1), pages 257-281, September.
    8. Ruey S. Tsay, 1992. "Model Checking Via Parametric Bootstraps in Time Series Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 1-15, March.
    9. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    10. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    11. Jung, Robert C. & Tremayne, A.R., 2006. "Coherent forecasting in integer time series models," International Journal of Forecasting, Elsevier, vol. 22(2), pages 223-238.
    12. Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gareth Liu-Evans, 2021. "Improving the Estimation and Predictions of Small Time Series Models," Working Papers 202106, University of Liverpool, Department of Economics.
    2. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    3. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    4. Vladica S. Stojanović & Hassan S. Bakouch & Eugen Ljajko & Najla Qarmalah, 2023. "Zero-and-One Integer-Valued AR(1) Time Series with Power Series Innovations and Probability Generating Function Estimation Approach," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    5. Dungey Mardi & Martin Vance L. & Tang Chrismin & Tremayne Andrew, 2020. "A threshold mixed count time series model: estimation and application," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bisaglia, Luisa & Canale, Antonio, 2016. "Bayesian nonparametric forecasting for INAR models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 70-78.
    2. Dungey Mardi & Martin Vance L. & Tang Chrismin & Tremayne Andrew, 2020. "A threshold mixed count time series model: estimation and application," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(2), pages 1-18, April.
    3. Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2019. "Evaluating Approximate Point Forecasting of Count Processes," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    4. Robert C. Jung & Andrew R. Tremayne, 2020. "Maximum-Likelihood Estimation in a Special Integer Autoregressive Model," Econometrics, MDPI, vol. 8(2), pages 1-15, June.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Yao Rao & David Harris & Brendan McCabe, 2022. "A semi‐parametric integer‐valued autoregressive model with covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 495-516, June.
    7. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    8. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    9. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    10. Cameron Fen, 2022. "Fast Simulation-Based Bayesian Estimation of Heterogeneous and Representative Agent Models using Normalizing Flow Neural Networks," Papers 2203.06537, arXiv.org.
    11. Forneron, Jean-Jacques & Ng, Serena, 2018. "The ABC of simulation estimation with auxiliary statistics," Journal of Econometrics, Elsevier, vol. 205(1), pages 112-139.
    12. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    13. Coenen, Gunter & Wieland, Volker, 2005. "A small estimated euro area model with rational expectations and nominal rigidities," European Economic Review, Elsevier, vol. 49(5), pages 1081-1104, July.
    14. Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04590149, HAL.
    15. Peter Smith & Michael Wickens, 2002. "Asset Pricing with Observable Stochastic Discount Factors," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 397-446, July.
    16. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    17. Ramón María-Dolores & Jesús Vázquez, 2008. "Term structure and the estimated monetary policy rule in the Eurozone," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(4), pages 251-277, December.
    18. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    19. Michael Creel & Dennis Kristensen, "undated". "Indirect Likelihood Inference," Working Papers 558, Barcelona School of Economics.
    20. María-Dolores Ramón & Vázquez Jesús, 2006. "How Does the New Keynesian Monetary Model Fit in the U.S. and the Eurozone? An Indirect Inference Approach," The B.E. Journal of Macroeconomics, De Gruyter, vol. 6(2), pages 1-51, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:35:y:2014:i:6:p:491-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.