IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v30y2009i1p70-96.html
   My bibliography  Save this article

On modelling and diagnostic checking of vector periodic autoregressive time series models

Author

Listed:
  • Eugen Ursu
  • Pierre Duchesne

Abstract

. Vector periodic autoregressive time series models (PVAR) form an important class of time series for modelling data derived from climatology, hydrology, economics and electrical engineering, among others. In this article, we derive the asymptotic distributions of the least squares estimators of the model parameters in PVAR models, allowing the parameters in a given season to satisfy linear constraints. Residual autocorrelations from classical vector autoregressive and moving‐average models have been found useful for checking the adequacy of a particular model. In view of this, we obtain the asymptotic distribution of the residual autocovariance matrices in the class of PVAR models, and the asymptotic distribution of the residual autocorrelation matrices is given as a corollary. Portmanteau test statistics designed for diagnosing the adequacy of PVAR models are introduced and we study their asymptotic distributions. The proposed test statistics are illustrated in a small simulation study, and an application with bivariate quarterly West German data is presented.

Suggested Citation

  • Eugen Ursu & Pierre Duchesne, 2009. "On modelling and diagnostic checking of vector periodic autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 70-96, January.
  • Handle: RePEc:bla:jtsera:v:30:y:2009:i:1:p:70-96
    DOI: 10.1111/j.1467-9892.2008.00601.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2008.00601.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2008.00601.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Lund & I. V. Basawa, 2000. "Recursive Prediction and Likelihood Evaluation for Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 75-93, January.
    2. Pierre Duchesne, 2005. "On the asymptotic distribution of residual autocovariances in VARX models with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 449-473, December.
    3. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    4. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030, Decembrie.
    5. A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.
    2. Christopher M. Schlick & Soenke Duckwitz & Sebastian Schneider, 2013. "Project dynamics and emergent complexity," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 480-515, December.
    3. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    4. Ursu, Eugen & Duchesne, Pierre, 2009. "On multiplicative seasonal modelling for vector time series," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2045-2052, October.
    5. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    6. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    7. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    8. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    9. Boubacar Maïnassara, Yacouba & Ursu, Eugen, 2025. "Diagnostic checking of periodic vector autoregressive time series models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    10. Yacouba Boubacar Maïnassara & Eugen Ursu, 2023. "Estimating weak periodic vector autoregressive time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 958-997, September.
    11. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.
    12. Stover, Oliver & Nath, Paromita & Karve, Pranav & Mahadevan, Sankaran & Baroud, Hiba, 2024. "Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    2. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    3. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    4. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    5. Boubacar Maïnassara, Yacouba & Ursu, Eugen, 2025. "Diagnostic checking of periodic vector autoregressive time series models with dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    6. Roy, Roch & Saidi, Abdessamad, 2008. "Aggregation and systematic sampling of periodic ARMA processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4287-4304, May.
    7. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    8. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
    9. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    10. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    11. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    12. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    13. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    14. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    15. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    16. Qin Shao & Robert Lund, 2004. "Computation and Characterization of Autocorrelations and Partial Autocorrelations in Periodic ARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 359-372, May.
    17. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    18. Lenart, Łukasz, 2013. "Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 252-269.
    19. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    20. Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:30:y:2009:i:1:p:70-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.