IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i3p323-354.html
   My bibliography  Save this article

Polynomial Trend Regression With Long‐memory Errors

Author

Listed:
  • Hwai‐Chung Ho
  • Nan‐Jung Hsu

Abstract

. For a time series generated by polynomial trend with stationary long‐memory errors, the ordinary least squares estimator (OLSE) of the trend coefficients is asymptotically normal, provided the error process is linear. The asymptotic distribution may no longer be normal, if the error is in the form of a long‐memory linear process passing through certain nonlinear transformations. However, one hardly has sufficient information about the transformation to determine which type of limiting distribution the OLSE converges to and to apply the correct distribution so as to construct valid confidence intervals for the coefficients based on the OLSE. The present paper proposes a modified least squares estimator to bypass this drawback. It is shown that the asymptotic normality can be assured for the modified estimator with mild trade‐off of efficiency even when the error is nonlinear and the original limit for the OLSE is non‐normal. The estimator performs fairly well when applied to various simulated series and two temperature data sets concerning global warming.

Suggested Citation

  • Hwai‐Chung Ho & Nan‐Jung Hsu, 2005. "Polynomial Trend Regression With Long‐memory Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 323-354, May.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:3:p:323-354
    DOI: 10.1111/j.1467-9892.2005.00405.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00405.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00405.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    2. Javier Hidalgo & Peter M Robinson, 2001. "Adapting to Unknown Disturbance Autocorrelation in Regression with Long Memory," STICERD - Econometrics Paper Series 427, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Rohit S. Deo & Clifford M. Hurvich, 1998. "Linear Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 379-397, July.
    4. Hannan, E. J., 1979. "The central limit theorem for time series regression," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 281-289, December.
    5. R. S. Deo, 1997. "Asymptotic theory for certain regression models with long memory errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(4), pages 385-393, July.
    6. Giraitis, Liudas & Koul, Hira L. & Surgailis, Donatas, 1996. "Asymptotic normality of regression estimators with long memory errors," Statistics & Probability Letters, Elsevier, vol. 29(4), pages 317-335, September.
    7. Koul, Hira L., 1992. "M-estimators in linear models with long range dependent errors," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 153-164, May.
    8. Hidalgo, Javier & Robinson, Peter, 2001. "Adapting to unknown disturbance autocorrelation in regression with long memory," LSE Research Online Documents on Economics 2078, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihong Wang, 2020. "Lack of fit test for long memory regression models," Statistical Papers, Springer, vol. 61(3), pages 1043-1067, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Morten Ø. Nielsen & Per Houmann Frederiksen, 2008. "Fully Modified Narrow-band Least Squares Estimation Of Stationary Fractional Cointegration," Working Paper 1171, Economics Department, Queen's University.
    3. Koul, Hira L. & Surgailis, Donatas, 2001. "Asymptotics of empirical processes of long memory moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 309-336, February.
    4. Koul, Hira L. & Baillie, Richard T., 2003. "Asymptotics of M-estimators in non-linear regression with long memory designs," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 237-252, February.
    5. Beran, Jan, 2006. "On location estimation for LARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1766-1782, September.
    6. Giraitis, Liudas & Robinson, Peter M., 2001. "Parametric estimation under long-range dependence," LSE Research Online Documents on Economics 2227, London School of Economics and Political Science, LSE Library.
    7. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    8. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    9. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Derek Bond & Michael J. Harrison & Edward J. O'Brien, 2005. "Testing for Long Memory and Nonlinear Time Series: A Demand for Money Study," Trinity Economics Papers tep20021, Trinity College Dublin, Department of Economics.
    11. Okimoto, Tatsuyoshi & Shimotsu, Katsumi, 2010. "Decline in the persistence of real exchange rates, but not sufficient for purchasing power parity," Journal of the Japanese and International Economies, Elsevier, vol. 24(3), pages 395-411, September.
    12. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    13. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    14. Karim M. Abadir & Walter Distaso & Liudas Giraitis, 2011. "An I() model with trend and cycles," Post-Print hal-00834425, HAL.
    15. Youndjé, É. & Vieu, P., 2006. "A note on quantile estimation for long-range dependent stochastic processes," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 109-116, January.
    16. Zhao, Zhibiao & Wu, Wei Biao, 2007. "Asymptotic theory for curve-crossing analysis," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 862-877, July.
    17. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. Gennadi Gromykov & Mohamedou Ould Haye & Anne Philippe, 2018. "A frequency-domain test for long range dependence," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 513-526, October.
    19. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    20. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:3:p:323-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.