IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i2p185-210.html
   My bibliography  Save this article

Blockwise empirical entropy tests for time series regressions

Author

Listed:
  • Francesco Bravo

Abstract

. This paper shows how the empirical entropy (also known as exponential likelihood or non‐parametric tilting) method can be used to test general parametric hypothesis in time series regressions. To capture the weak dependence of the observations, the paper uses blocking techniques which are also used in the bootstrap literature on time series. Monte Carlo evidence suggests that the proposed test statistics have better finite‐sample properties than conventional test statistics such as the Wald statistic.

Suggested Citation

  • Francesco Bravo, 2005. "Blockwise empirical entropy tests for time series regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 185-210, March.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:185-210
    DOI: 10.1111/j.1467-9892.2005.00398.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2005.00398.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2005.00398.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, S. X., 1994. "Comparing Empirical Likelihood and Bootstrap Hypothesis Tests," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 277-293, November.
    2. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    5. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    6. Gourieroux, C. & Monfort, A., 1989. "A General Framework for Testing a Null Hypothesis in a “Mixed” Form," Econometric Theory, Cambridge University Press, vol. 5(1), pages 63-82, April.
    7. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    8. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    9. Bruce Brown & Song Chen, 1998. "Combined and Least Squares Empirical Likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(4), pages 697-714, December.
    10. Hoffman, Dennis L. & Schmidt, Peter, 1981. "Testing the restrictions implied by the rational expectations hypothesis," Journal of Econometrics, Elsevier, vol. 15(2), pages 265-287, February.
    11. P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Nordman, 2008. "An empirical likelihood method for spatial regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 351-363, November.
    2. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    3. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    4. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Cowles Foundation Discussion Papers 1569, Cowles Foundation for Research in Economics, Yale University.
    5. Daniel J. Nordman & Helle Bunzel & Soumendra N. Lahiri, 2012. "A Non-standard Empirical Likelihood for Time Series," CREATES Research Papers 2012-55, Department of Economics and Business Economics, Aarhus University.
    6. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Levine's Bibliography 321307000000000307, UCLA Department of Economics.
    7. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    8. Francesco Bravo, 2016. "Local Information Theoretic Methods for smooth Coefficients Dynamic Panel Data Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 690-708, September.
    9. Marc G. Genton & Peter Hall, 2016. "A tilting approach to ranking influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 77-97, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    2. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    3. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    4. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    5. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    6. Paulo Parente & Richard J. Smith, 2024. "Implied probability kernel block bootstrap for time series moment condition models," CeMMAP working papers 08/24, Institute for Fiscal Studies.
    7. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    8. Daniel Wilhelm, 2014. "Optimal bandwidth selection for robust generalized method of moments estimation," CeMMAP working papers 15/14, Institute for Fiscal Studies.
    9. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    10. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    11. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    12. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    13. repec:jss:jstsof:34:i11 is not listed on IDEAS
    14. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    15. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    16. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    17. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    18. Kim, Jae-Young, 2014. "An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification," Journal of Econometrics, Elsevier, vol. 178(P1), pages 132-145.
    19. Alain Guay & Florian Pelgrin, 2007. "Using Implied Probabilities to Improve Estimation with Unconditional Moment Restrictions," Cahiers de recherche 0747, CIRPEE.
    20. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    21. Almeida, Caio & Garcia, René, 2012. "Assessing misspecified asset pricing models with empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 170(2), pages 519-537.
    22. Grendar, Marian & Judge, George G, 2009. "Maximum Empirical Likelihood: Empty Set Problem," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt71v338mh, Department of Agricultural & Resource Economics, UC Berkeley.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:185-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.