IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i3p503-524.html
   My bibliography  Save this article

Robust and adaptive anticoagulant control

Author

Listed:
  • Peter Avery
  • Quentin Clairon
  • Robin Henderson
  • C. James Taylor
  • Emma Wilson

Abstract

We consider a control theory approach to adaptive dose allocation of anticoagulants, based on an analysis of records of 152 patients on long‐term warfarin treatment. We consider a selection of statistical models for the relationship between the dose of drug and subsequent blood clotting speed, measured through the international normalized ratio. Our main focus is on subsequent use of the model in guiding the choice of the next dose adaptively as patient‐specific information accrues. We compare a naive long‐term approach with a proportional‐integral‐plus method, with parameters estimated by either linear quadratic optimization or by stochastic resource allocation. We demonstrate advantages of the control approaches in comparison with a naive approach in simulations and through calculation of robust stability margins for the observed data.

Suggested Citation

  • Peter Avery & Quentin Clairon & Robin Henderson & C. James Taylor & Emma Wilson, 2020. "Robust and adaptive anticoagulant control," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 503-524, June.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:503-524
    DOI: 10.1111/rssc.12403
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12403
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Robin Henderson & Phil Ansell & Deyadeen Alshibani, 2010. "Regret-Regression for Optimal Dynamic Treatment Regimes," Biometrics, The International Biometric Society, vol. 66(4), pages 1192-1201, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurence T Kell & Iago Mosqueira & Henning Winker & Rishi Sharma & Toshihide Kitakado & Massimiliano Cardinale, 2024. "Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-21, July.
    2. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Tommi Härkänen & Anna But & Jari Haukka, 2017. "Non-parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 798-814, September.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    6. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    7. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    8. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    9. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    10. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    11. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    12. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    13. Niko Hauzenberger & Florian Huber & Massimiliano Marcellino & Nico Petz, 2025. "Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 43(1), pages 27-43, January.
    14. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    15. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    16. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    17. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    18. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    19. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Yeow Meng Thum, 2003. "Measuring Progress Toward a Goal," Sociological Methods & Research, , vol. 32(2), pages 153-207, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:503-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.