IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i1p3-36.html
   My bibliography  Save this article

The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis

Author

Listed:
  • Anna Gloria Billé
  • Marco Rogna

Abstract

Given the extreme dependence of agriculture on weather conditions, this paper analyses the effect of climatic variations on this economic sector, by considering both a huge data set and a flexible spatiotemporal model specification. In particular, we study the response of N‐fertilizer application to abnormal weather conditions, while accounting for other relevant control variables. The data set consists of gridded data spanning over 21 years (1993–2013), while the methodological strategy makes use of a spatial dynamic panel data (SDPD) model that accounts for both space and time fixed effects, besides dealing with both space and time dependences. Time‐invariant short‐ and long‐term effects, as well as time‐varying marginal effects are also properly defined, revealing interesting results on the impact of both GDP and weather conditions on fertilizer utilizations. The analysis considers four macroregions—Europe, South America, Southeast Asia and Africa—to allow for comparisons among different socio‐economic societies. In addition to finding both spatial (in the form of knowledge spillover effects) and temporal dependences as well as a good support for the existence of an environmental Kuznets curve for fertilizer application, the paper shows peculiar responses of N‐fertilization to deviations from normal weather conditions of moisture for each selected region, calling for ad hoc policy interventions.

Suggested Citation

  • Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:3-36
    DOI: 10.1111/rssa.12709
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12709
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    2. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    3. Ding, Ya & Schoengold, Karina & Tadesse, Tsegaye, 2009. "The Impact of Weather Extremes on Agricultural Production Methods: Does Drought Increase Adoption of Conservation Tillage Practices?," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(3), pages 1-17, December.
    4. Paul Elhorst & Eelco Zandberg & Jakob De Haan, 2013. "The Impact of Interaction Effects among Neighbouring Countries on Financial Liberalization and Reform: A Dynamic Spatial Panel Data Approach," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 293-313, September.
    5. Pandey, S. & Bhandari, H. & Hardy, B., 2007. "Economic Costs of Drought and Rice Farmers’ Coping Mechanisms: A Cross-Country Comparative Analysis," IRRI Books, International Rice Research Institute (IRRI), number 281814.
    6. Jan Mutl & Michael Pfaffermayr, 2011. "The Hausman test in a Cliff and Ord panel model," Econometrics Journal, Royal Economic Society, vol. 14, pages 48-76, February.
    7. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
    8. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    10. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    11. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    12. Baltagi, Badi H. & Song, Seuck Heun & Koh, Won, 2003. "Testing panel data regression models with spatial error correlation," Journal of Econometrics, Elsevier, vol. 117(1), pages 123-150, November.
    13. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    14. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    15. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    16. Pardeep Pall & Tolu Aina & Dáithí A. Stone & Peter A. Stott & Toru Nozawa & Arno G. J. Hilberts & Dag Lohmann & Myles R. Allen, 2011. "Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000," Nature, Nature, vol. 470(7334), pages 382-385, February.
    17. Monica Fisher & Tsedeke Abate & Rodney Lunduka & Woinishet Asnake & Yoseph Alemayehu & Ruth Madulu, 2015. "Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa," Climatic Change, Springer, vol. 133(2), pages 283-299, November.
    18. Hubert Jayet & Julie Le Gallo & Luc Anselin, 2008. "Spatial Econometrics and Panel Data Models," Post-Print hal-02389412, HAL.
    19. N/A, 2004. "Index for 2004," European Union Politics, , vol. 5(4), pages 511-512, December.
    20. Meredith J. Soule & Abebayehu Tegene & Keith D. Wiebe, 2000. "Land Tenure and the Adoption of Conservation Practices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 993-1005.
    21. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    22. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    23. Lee, Lung-fei & Yu, Jihai, 2011. "Estimation of Spatial Panels," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(1–2), pages 1-164, April.
    24. Baylis, Katherine R. & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-14, August.
    25. Md. Nazir Hossain & Swapna Chowdhury & Shitangsu Kumar Paul, 2016. "Farmer-level adaptation to climate change and agricultural drought: empirical evidences from the Barind region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1007-1026, September.
    26. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    27. Xu, Xingbai & Lee, Lung-fei, 2015. "Maximum likelihood estimation of a spatial autoregressive Tobit model," Journal of Econometrics, Elsevier, vol. 188(1), pages 264-280.
    28. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    29. Federico Belotti & Gordon Hughes & Andrea Piano Mortari, 2017. "Spatial panel-data models using Stata," Stata Journal, StataCorp LP, vol. 17(1), pages 139-180, March.
    30. Parent, Olivier & LeSage, James P., 2012. "Spatial dynamic panel data models with random effects," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 727-738.
    31. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    32. Lee, Lung-fei & Yu, Jihai, 2010. "A Spatial Dynamic Panel Data Model With Both Time And Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 26(2), pages 564-597, April.
    33. Stephen Devereux, 2007. "The impact of droughts and floods on food security and policy options to alleviate negative effects," Agricultural Economics, International Association of Agricultural Economists, vol. 37(s1), pages 47-58, December.
    34. Lung-fei Lee & Jihai Yu, 2020. "Initial conditions of dynamic panel data models: on within and between equations," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 115-136.
    35. Millo, Giovanni, 2017. "A simple randomization test for spatial correlation in the presence of common factors and serial correlation," Regional Science and Urban Economics, Elsevier, vol. 66(C), pages 28-38.
    36. Lee, Lung-fei & Yu, Jihai, 2010. "Some recent developments in spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 255-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2022. "Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    2. Christian Glocker & Matteo Iacopini & Tam'as Krisztin & Philipp Piribauer, 2023. "A Bayesian Markov-switching SAR model for time-varying cross-price spillovers," Papers 2310.19557, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    2. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    3. Taşpınar, Süleyman & Doğan, Osman & Bera, Anil K., 2017. "GMM gradient tests for spatial dynamic panel data models," Regional Science and Urban Economics, Elsevier, vol. 65(C), pages 65-88.
    4. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    5. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    6. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
    7. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    8. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    9. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    10. Manuela Fritz, 2022. "Wave after wave: determining the temporal lag in Covid-19 infections and deaths using spatial panel data from Germany," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-30, December.
    11. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    12. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    13. Anna Gloria Billé & Massimiliano Caporin, 2022. "Impact of COVID-19 on financial returns: a spatial dynamic panel data model with random effects," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-21, December.
    14. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude," Monash Econometrics and Business Statistics Working Papers 11/20, Monash University, Department of Econometrics and Business Statistics.
    15. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    16. Harry H. Kelejian & Gianfranco Piras, 2013. "A J-Test for Panel Models with Fixed Effects, Spatial and Time," Working Papers Working Paper 2013-03, Regional Research Institute, West Virginia University.
    17. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    18. Yang, Zhenlin & Yu, Jihai & Liu, Shew Fan, 2016. "Bias correction and refined inferences for fixed effects spatial panel data models," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 52-72.
    19. Mengqi Zhang & Boping Tian, 2023. "Profile Maximum Likelihood Estimation of Single-Index Spatial Dynamic Panel Data Model," Mathematics, MDPI, vol. 11(13), pages 1-16, July.
    20. Li, Liyao & Yang, Zhenlin, 2020. "Estimation of fixed effects spatial dynamic panel data models with small T and unknown heteroskedasticity," Regional Science and Urban Economics, Elsevier, vol. 81(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:1:p:3-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.