IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i4p1245-1259.html
   My bibliography  Save this article

Using text mining to track outbreak trends in global surveillance of emerging diseases: ProMED‐mail

Author

Listed:
  • Jingxian You
  • Paul Expert
  • Céire Costelloe

Abstract

ProMED‐mail (Program for Monitoring Emerging Disease) is an international disease outbreak monitoring and early warning system. Every year, users contribute thousands of reports that include reference to infectious diseases and toxins. However, due to the uneven distribution of the reports for each disease, traditional statistics‐based text mining techniques, represented by term frequency‐related algorithm, are not suitable. Thus, we conducted a study in three steps (i) report filtering, (ii) keyword extraction from reports and finally (iii) word co‐occurrence network analysis to fill the gap between ProMED and its utilization. The keyword extraction was performed with the TextRank algorithm, keywords co‐occurrence networks were then produced using the top keywords from each document and multiple network centrality measures were computed to analyse the co‐occurrence networks. We used two major outbreaks in recent years, Ebola, 2014 and Zika 2015, as cases to illustrate and validate the process. We found that the extracted information structures are consistent with World Health Organisation description of the timeline and phases of the epidemics. Our research presents a pipeline that can extract and organize the information to characterize the evolution of epidemic outbreaks. It also highlights the potential for ProMED to be utilized in monitoring, evaluating and improving responses to outbreaks.

Suggested Citation

  • Jingxian You & Paul Expert & Céire Costelloe, 2021. "Using text mining to track outbreak trends in global surveillance of emerging diseases: ProMED‐mail," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1245-1259, October.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1245-1259
    DOI: 10.1111/rssa.12721
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12721
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao‐Li Meng, 2021. "Enhancing (publications on) data quality: Deeper data minding and fuller data confession," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1161-1175, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Mingxi Zhang & Pohan Li & Wei Wang, 2017. "An index-based algorithm for fast on-line query processing of latent semantic analysis," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    3. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    4. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    5. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    6. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    7. Pietro Fera & Nicola Moscariello & Gianmarco Salzillo & Emilio Farina, 2025. "Towards the Regulation of Non‐Financial Reporting: The Impact on Environmental Disclosure Within the Oil and Gas Sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 32(3), pages 4053-4067, May.
    8. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    9. Beaupain, Renaud & Girard, Alexandre, 2020. "The value of understanding central bank communication," Economic Modelling, Elsevier, vol. 85(C), pages 154-165.
    10. Hoppenbrouwers, J.J.A.C. & Paijmans, J.J., 2000. "Invading the fortress : How to beseige reinforced information bunkers," Other publications TiSEM 62e33d30-6377-48c8-9bdf-b, Tilburg University, School of Economics and Management.
    11. Whalen, Ryan, 2018. "Boundary spanning innovation and the patent system: Interdisciplinary challenges for a specialized examination system," Research Policy, Elsevier, vol. 47(7), pages 1334-1343.
    12. Romain Gauchon & Stéphane Loisel & Jean-Louis Rullière, 2020. "Health-policyholder clustering using health consumption," Post-Print hal-02156058, HAL.
    13. Yueyang Zhao & Lei Cui, 2023. "Fusion Matrix–Based Text Similarity Measures for Clustering of Retrieval Results," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1163-1186, February.
    14. Zekun Wang & Zhaohua Deng & Xiang Wu, 2019. "Status Quo of Professional–Patient Relations in the Internet Era: Bibliometric and Co-Word Analyses," IJERPH, MDPI, vol. 16(7), pages 1-19, April.
    15. Paramveer S. Dhillon & Sinan Aral, 2021. "Modeling Dynamic User Interests: A Neural Matrix Factorization Approach," Marketing Science, INFORMS, vol. 40(6), pages 1059-1080, November.
    16. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    17. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    18. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    19. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    20. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1245-1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.