IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v10y2023i2p74-84.html
   My bibliography  Save this article

Polynomial Networks Model for Arabic Text Summarization

Author

Listed:
  • Mohammed Salem Binwahlan

    (Information Technology Department, College of Applied Science, Seiyun University)

Abstract

Online sources enable users to get their information needs. But, finding the relevant information, in such sources, became a big challenge and time consumption due to the massive size of data those sources contain. Automatic text summarization is an important facility to overcome such a problem. To this end, many text summarization algorithms have been proposed based on different techniques and different methodologies. Text features are the main entries in text summarization, where each feature plays a different role for showing the most important content. This study introduces the polynomial networks (PN) for Arabic text summarization problem. The role of the polynomial networks (PN) is to compute optimal weights, through the training process of PN classifier, where these weights were used to adjust the text features scores. Adjusting the text features scores creates a fair dealing with those features according to their importance and plays an important role in the differentiation between higher and less important ones. The proposed model produces a summary of an original document through classifying each sentence as summary sentence or non-summary sentence. Six summarizers (Naïve Bayes, AQBTSS, Gen–Summ, LSA–Summ, Sakhr1 and Baseline–1) were used as benchmarks. The proposed model and benchmarks were evaluated using the same dataset (EASC – the Essex Arabic Summaries Corpus). The results shew that the proposed model defeats the all six summarizers. In addition, the rate error results of both the proposed model (PN classifier) and Naïve Bayes (NB classifier), it is a clear that the proposed model (PN classifier) works better. In general, the proposed model provides a good enhancement indicating that the polynomial networks (PN) are a promising technique for text summarization problem.

Suggested Citation

  • Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
  • Handle: RePEc:bjc:journl:v:10:y:2023:i:2:p:74-84
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-10-issue-2/74-84.pdf
    Download Restriction: no

    File URL: https://www.rsisinternational.org/virtual-library/papers/polynomial-networks-model-for-arabic-text-summarization/?utm_source=Netcore&utm_medium=Email&utm_content=26octkrish&utm_campaign=Krishuo1
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Beatrice Ferrario & Stefanie Stantcheva, 2022. "Eliciting People's First-Order Concerns: Text Analysis of Open-Ended Survey Questions," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 163-169, May.
    3. Roman Stutzer & Adrian Rinscheid & Thiago D. Oliveira & Pedro Mendes Loureiro & Aya Kachi & Mert Duygan, 2021. "Black coal, thin ice: the discursive legitimisation of Australian coal in the age of climate change," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    4. Kamal Sanguri & Atanu Bhuyan & Sabyasachi Patra, 2020. "A semantic similarity adjusted document co-citation analysis: a case of tourism supply chain," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 233-269, October.
    5. Sergey Nasekin & Cathy Yi-Hsuan Chen, 2020. "Deep learning-based cryptocurrency sentiment construction," Digital Finance, Springer, vol. 2(1), pages 39-67, September.
    6. Mingxi Zhang & Pohan Li & Wei Wang, 2017. "An index-based algorithm for fast on-line query processing of latent semantic analysis," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    7. Luis Pilacuan-Bonete & Purificación Galindo-Villardón & Francisco Delgado-Álvarez, 2022. "HJ-Biplot as a Tool to Give an Extra Analytical Boost for the Latent Dirichlet Assignment (LDA) Model: With an Application to Digital News Analysis about COVID-19," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
    8. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    9. Philipp Tuertscher & Raghu Garud & Arun Kumaraswamy, 2014. "Justification and Interlaced Knowledge at ATLAS, CERN," Organization Science, INFORMS, vol. 25(6), pages 1579-1608, December.
    10. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    11. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    12. Cristina Alexandrina Stefanescu, 2011. "Transparency And Disclosure In European Corporate Governance Codes – Does Issuer Matter?," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 6(1), pages 94-108, April.
    13. Pietro Fera & Nicola Moscariello & Gianmarco Salzillo & Emilio Farina, 2025. "Towards the Regulation of Non‐Financial Reporting: The Impact on Environmental Disclosure Within the Oil and Gas Sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 32(3), pages 4053-4067, May.
    14. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    15. Beaupain, Renaud & Girard, Alexandre, 2020. "The value of understanding central bank communication," Economic Modelling, Elsevier, vol. 85(C), pages 154-165.
    16. Manfred Stede & Yannic Bracke & Luka Borec & Neele Charlotte Kinkel & Maria Skeppstedt, 2023. "Framing climate change in Nature and Science editorials: applications of supervised and unsupervised text categorization," Journal of Computational Social Science, Springer, vol. 6(2), pages 485-513, October.
    17. Chen, Long-Sheng & Liu, Cheng-Hsiang & Chiu, Hui-Ju, 2011. "A neural network based approach for sentiment classification in the blogosphere," Journal of Informetrics, Elsevier, vol. 5(2), pages 313-322.
    18. Yan Zhihua & Tang Xijin, 2020. "Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 309-324, August.
    19. Hoppenbrouwers, J.J.A.C. & Paijmans, J.J., 2000. "Invading the fortress : How to beseige reinforced information bunkers," Other publications TiSEM 62e33d30-6377-48c8-9bdf-b, Tilburg University, School of Economics and Management.
    20. Whalen, Ryan, 2018. "Boundary spanning innovation and the patent system: Interdisciplinary challenges for a specialized examination system," Research Policy, Elsevier, vol. 47(7), pages 1334-1343.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:10:y:2023:i:2:p:74-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.