IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v169y2006i4p723-743.html
   My bibliography  Save this article

Latent class logistic regression: application to marijuana use and attitudes among high school seniors

Author

Listed:
  • Hwan Chung
  • Brian P. Flaherty
  • Joseph L. Schafer

Abstract

Summary. Analysing the use of marijuana is challenging in part because there is no widely accepted single measure of individual use. Similarly, there is no single response variable that effectively captures attitudes toward its social and moral acceptability. One approach is to view the joint distribution of multiple use and attitude indicators as a mixture of latent classes. Pooling items from the annual ‘Monitoring the future’ surveys of American high school seniors from 1977 to 2001, we find that marijuana use and attitudes are well summarized by a four‐class model. Secular trends in class prevalences over this period reveal major shifts in use and attitudes. Applying a multinomial logistic model to the latent response, we investigate how class membership relates to demographic and life style factors, political beliefs and religiosity over time. Inferences about the parameters of the latent class logistic model are obtained by a combination of maximum likelihood and Bayesian techniques.

Suggested Citation

  • Hwan Chung & Brian P. Flaherty & Joseph L. Schafer, 2006. "Latent class logistic regression: application to marijuana use and attitudes among high school seniors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 723-743, October.
  • Handle: RePEc:bla:jorssa:v:169:y:2006:i:4:p:723-743
    DOI: 10.1111/j.1467-985X.2006.00419.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2006.00419.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2006.00419.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul P. Biemer & Christopher Wiesen, 2002. "Measurement error evaluation of self‐reported drug use: a latent class analysis of the US National Household Survey on Drug Abuse," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 97-119, February.
    2. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    3. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    4. Elizabeth S. Garrett & Scott L. Zeger, 2000. "Latent Class Model Diagnosis," Biometrics, The International Biometric Society, vol. 56(4), pages 1055-1067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    2. Jung, Hyekyung & Schafer, Joseph L. & Seo, Byungtae, 2011. "A latent class selection model for nonignorably missing data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 802-812, January.
    3. Vij, Akshay & Walker, Joan L., 2014. "Preference endogeneity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 90-105.
    4. Jay, Flora & François, Olivier & Durand, Eric Y. & Blum, Michael G. B., 2015. "POPS: A Software for Prediction of Population Genetic Structure Using Latent Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i09).
    5. Hwan Chung & Theodore Walls & Yousung Park, 2007. "A Latent Transition Model With Logistic Regression," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 413-435, September.
    6. Hakaru Iguchi & Hajime Katayama & Junichi Yamanoi, 2022. "CEOs’ religiosity and corporate green initiatives," Small Business Economics, Springer, vol. 58(1), pages 497-522, January.
    7. Nilba Feijó-Cuenca & Nuria Ceular-Villamandos & Virginia Navajas-Romero, 2023. "Behavioral Patterns That Influence the Financing Choice Models of Small Enterprises in Ecuador through Latent Class Analysis," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    8. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Jia-Chiun Pan & Guan-Hua Huang, 2014. "Bayesian Inferences of Latent Class Models with an Unknown Number of Classes," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 621-646, October.
    3. John M. Abowd & William R. Bell & J. David Brown & Michael B. Hawes & Misty L. Heggeness & Andrew D. Keller & Vincent T. Mule Jr. & Joseph L. Schafer & Matthew Spence & Lawrence Warren & Moises Yi, 2020. "Determination of the 2020 U.S. Citizen Voting Age Population (CVAP) Using Administrative Records and Statistical Methodology Technical Report," Working Papers 20-33, Center for Economic Studies, U.S. Census Bureau.
    4. Kenneth W. Griffin & Lawrence M. Scheier & Bianca Acevedo & Jerry L. Grenard & Gilbert J. Botvin, 2011. "Long-Term Effects of Self-Control on Alcohol Use and Sexual Behavior among Urban Minority Young Women," IJERPH, MDPI, vol. 9(1), pages 1-23, December.
    5. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    6. Alston, C.L. & Mengersen, K.L. & Robert, C.P. & Thompson, J.M. & Littlefield, P.J. & Perry, D. & Ball, A.J., 2007. "Bayesian mixture models in a longitudinal setting for analysing sheep CAT scan images," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4282-4296, May.
    7. Benjamin G Schultz & Catherine J Stevens & Peter E Keller & Barbara Tillmann, 2013. "A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    8. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    9. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Djik, 2024. "Flexible Negative Binomial Mixtures for Credible Mode Inference in Heterogeneous Count Data from Finance, Economics and Bioinformatics," Working Papers No 09/2024, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    10. Papastamoulis, Panagiotis & Iliopoulos, George, 2009. "Reversible Jump MCMC in mixtures of normal distributions with the same component means," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 900-911, February.
    11. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    12. Javier Escobal & Sonia Laszlo, 2008. "Measurement Error in Access to Markets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(2), pages 209-243, April.
    13. Yang, Wei & Meyer, Klaus E., 2020. "How do local and foreign firms compete? Competitive actions in an emerging economy," International Business Review, Elsevier, vol. 29(3).
    14. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    15. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    16. Jurica Bosna, 2018. "Estimation Of The Great Decoupling On The Example Of Croatia, As Compared With Germany And Poland," Poslovna izvrsnost/Business Excellence, Faculty of Economics and Business, University of Zagreb, vol. 12(1), pages 33-52.
    17. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    18. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    19. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    20. Donal O'Neill & Olive Sweetman, 2013. "Estimating Obesity Rates in Europe in the Presence of Self-Reporting Errors," Economics Department Working Paper Series n236-13.pdf, Department of Economics, National University of Ireland - Maynooth.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:169:y:2006:i:4:p:723-743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.