IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v28y2024i3p603-616.html
   My bibliography  Save this article

Regional transformation pathways for the bioeconomy: A novel monitoring approach for complex transitions

Author

Listed:
  • Florian Siekmann
  • Sandra Venghaus

Abstract

Addressing the complexities of transitioning to a sustainable bioeconomy, this paper presents a novel approach for developing regional transformation pathways (RTPs) based on narratives derived from the shared socioeconomic pathways. The methodology emphasizes a comprehensive understanding of underlying perspectives and perceptions, incorporating socio‐economic, environmental, and political dimensions. The developed indicator framework captures a balanced representation of diverse interests by integrating insights from stakeholder analyses. The case study in the Rheinisches Revier region, Germany, exemplifies the approach's applicability, providing valuable insights for decision‐making processes in the context of regional transitions toward a low‐carbon economy. The results consist of five developed RTPs, offering a multitude of potential future trajectories of possible directions for regional transformations. Understanding potential pathways and related consequences is crucial for informed decision‐making concerning resource use optimization since transformations of that scale influence the composition of supply chains and resource networks. This informed approach contributes to strategic planning and helps ensure resources are utilized efficiently and sustainably. By emphasizing the crucial role of transparency and reflection of assumptions in addressing the complexities of societal transformation processes, our approach seeks to support the implementation of a sustainable and inclusive bioeconomy at the regional level.

Suggested Citation

  • Florian Siekmann & Sandra Venghaus, 2024. "Regional transformation pathways for the bioeconomy: A novel monitoring approach for complex transitions," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 603-616, June.
  • Handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:603-616
    DOI: 10.1111/jiec.13484
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13484
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    2. Lee Lane & W. Montgomery, 2014. "An institutional critique of new climate scenarios," Climatic Change, Springer, vol. 122(3), pages 447-458, February.
    3. Sophia Dieken & Sandra Venghaus, 2020. "Potential Pathways to the German Bioeconomy: A Media Discourse Analysis of Public Perceptions," Sustainability, MDPI, vol. 12(19), pages 1-24, September.
    4. Lühmann, Malte & Vogelpohl, Thomas, 2023. "The bioeconomy in Germany: A failing political project?," Ecological Economics, Elsevier, vol. 207(C).
    5. Stefan Bringezu & Martin Distelkamp & Christian Lutz & Florian Wimmer & Rüdiger Schaldach & Klaus Josef Hennenberg & Hannes Böttcher & Vincent Egenolf, 2021. "Environmental and socioeconomic footprints of the German bioeconomy," Nature Sustainability, Nature, vol. 4(9), pages 775-783, September.
    6. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    7. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    8. Vincent Egenolf & Stefan Bringezu, 2019. "Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    9. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    10. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    11. Vanessa Schweizer & Brian O’Neill, 2014. "Systematic construction of global socioeconomic pathways using internally consistent element combinations," Climatic Change, Springer, vol. 122(3), pages 431-445, February.
    12. Yuliia Maksymiv & Valentyna Yakubiv & Nadia Pylypiv & Iryna Hryhoruk & Iryna Piatnychuk & Nazariy Popadynets, 2021. "Strategic Challenges for Sustainable Governance of the Bioeconomy: Preventing Conflict between SDGs," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    13. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    14. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    15. Stefania Bracco & Ozgul Calicioglu & Marta Gomez San Juan & Alessandro Flammini, 2018. "Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    16. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    17. Giampietro, Mario, 2019. "On the Circular Bioeconomy and Decoupling: Implications for Sustainable Growth," Ecological Economics, Elsevier, vol. 162(C), pages 143-156.
    18. Nils Johansson & Joakim Krook, 2021. "How to handle the policy conflict between resource circulation and hazardous substances in the use of waste?," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 994-1008, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    2. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    3. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    4. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    5. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    7. Standardi, Gabriele, 2017. "Endogenous technical change linked to international mobility of primary factors in climate change scenarios: global welfare implications using the GTAP model," Conference papers 332920, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    9. Dale S. Rothman & Paul Raskin & Kasper Kok & John Robinson & Jill Jäger & Barry Hughes & Paul C. Sutton, 2023. "Global Discontinuity: Time for a Paradigm Shift in Global Scenario Analysis," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    10. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    11. Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
    12. Small, Mitchell J. & Wong-Parodi, Gabrielle & Kefford, Benjamin M. & Stringer, Martin & Schmeda-Lopez, Diego R. & Greig, Chris & Ballinger, Benjamin & Wilson, Stephen & Smart, Simon, 2019. "Generating linked technology-socioeconomic scenarios for emerging energy transitions," Applied Energy, Elsevier, vol. 239(C), pages 1402-1423.
    13. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    14. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    16. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    17. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    18. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    19. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    20. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:28:y:2024:i:3:p:603-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.