IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i3p993-1007.html
   My bibliography  Save this article

Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems

Author

Listed:
  • Neill Bartie
  • Lucero Cobos‐Becerra
  • Florian Mathies
  • Janardan Dagar
  • Eva Unger
  • Magnus Fröhling
  • Markus A. Reuter
  • Rutger Schlatmann

Abstract

Photovoltaics will play a key role in future energy systems, but their full potential may not be realized until their life cycles are optimized for circularity and overall sustainability. Methods that quantify flows of compound and minor element mixtures, rather than non‐mixed elemental flows, are needed to prospectively analyze and predict inventory and performance for complex technology life cycles. This study utilizes process simulation to resolve the mass and energy balances needed to rigorously analyze these complexities in circular systems. Using physics‐based prospective inventory data, we simultaneously assess the environmental and techno‐economic performance of three photovoltaic life cycles and predict the effects of circularity on resource efficiency, carbon footprint, and levelized cost of electricity. One inventory dataset is generated per life cycle to ensure alignment between assessments and to identify trade‐offs between environmental and techno‐economic performance with respect to circularity, so linking circularity and sustainability. The linked material and energy resource and techno‐economic models allow for the impacts of carbon taxation and the moderating effects of circularity to be explored. In addition to the clear environmental benefits of increased circularity, we find that it could dampen the cost impact of taxation. While confirming that perovskite‐based modules, single junction or in tandem with silicon, clearly outperform the silicon market standard both techno‐economically and environmentally, we show that maximum circularity does not automatically deliver the most sustainable outcome. The approach enables assessment of the combined impacts of specific technological, commercial, and policy choices made by different actors along the photovoltaic value chain. This article met the requirements for a gold–gold JIE data openness badge described at http://jie.click/badges.

Suggested Citation

  • Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:993-1007
    DOI: 10.1111/jiec.13389
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13389
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ms. Florence Jaumotte & Weifeng Liu & Warwick J. McKibbin, 2021. "Mitigating Climate Change: Growth-Friendly Policies to Achieve Net Zero Emissions by 2050," IMF Working Papers 2021/195, International Monetary Fund.
    2. Steffen, Bjarne, 2020. "Estimating the cost of capital for renewable energy projects," Energy Economics, Elsevier, vol. 88(C).
    3. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    4. Erik Roos Lindgreen & Roberta Salomone & Tatiana Reyes, 2020. "A Critical Review of Academic Approaches, Methods and Tools to Assess Circular Economy at the Micro Level," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    5. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    6. Sarah E. Sofia & Jonathan P. Mailoa & Dirk N. Weiss & Billy J. Stanbery & Tonio Buonassisi & I. Marius Peters, 2018. "Economic viability of thin-film tandem solar modules in the United States," Nature Energy, Nature, vol. 3(5), pages 387-394, May.
    7. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    8. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    9. Xueyu Tian & Samuel D. Stranks & Fengqi You, 2021. "Life cycle assessment of recycling strategies for perovskite photovoltaic modules," Nature Sustainability, Nature, vol. 4(9), pages 821-829, September.
    10. Battisti, Riccardo & Corrado, Annalisa, 2005. "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology," Energy, Elsevier, vol. 30(7), pages 952-967.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    2. Mariia Kravchenko & Daniela C. A. Pigosso & Tim C. McAloone, 2020. "A Trade-Off Navigation Framework as a Decision Support for Conflicting Sustainability Indicators within Circular Economy Implementation in the Manufacturing Industry," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    3. Piotr F. Borowski, 2021. "Innovation strategy on the example of companies using bamboo," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    4. Aitor Salesa & Raúl León & José Mariano Moneva, 2023. "Airlines practices to incorporate circular economy principles into the waste management system," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(1), pages 443-458, January.
    5. Monika Stelmaszczyk & Agata Pierścieniak & Anna Krzysztofek, 2021. "Managerial Energy in Sustainable Enterprises: Organizational Wisdom Approach," Energies, MDPI, vol. 14(9), pages 1-18, April.
    6. Katarzyna Brendzel-Skowera, 2021. "Circular Economy Business Models in the SME Sector," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    7. Luis Manuel Cerdá-Suárez & Juan Felipe Espinosa-Cristia & Karen Núñez-Valdés & Gerson Núñez-Valdés, 2023. "Detecting Circular Economy Strategies in the Fourth Sector: Overview of the Chilean Construction Sector as Evidence of a Sustainable Business Model," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    8. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    9. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    10. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    11. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    12. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    13. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    14. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    15. Franco Fassio & Chiara Chirilli, 2023. "The Circular Economy and the Food System: A Review of Principal Measuring Tools," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    16. Sharma, Rajesh & Shahbaz, Muhammad & Sinha, Avik & Vo, Xuan Vinh, 2021. "Examining the temporal impact of stock market development on carbon intensity: Evidence from South Asian countries," MPRA Paper 108925, University Library of Munich, Germany, revised 2021.
    17. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    18. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    19. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability,, Springer.
    20. Luiz Moreira Coelho Junior & Amadeu Junior da Silva Fonseca & Roberto Castro & João Carlos de Oliveira Mello & Victor Hugo Ribeiro dos Santos & Renato Barros Pinheiro & Wilton Lima Sousa & Edvaldo Per, 2022. "Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil," Energies, MDPI, vol. 15(12), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:993-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.