IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i6p1363-1380.html
   My bibliography  Save this article

Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis

Author

Listed:
  • Di Dong
  • Arnold Tukker
  • Ester Van der Voet

Abstract

In this paper, we develop a dynamic stock model and scenario analysis involving a bottom‐up approach to analyze copper demand in China from 2005 to 2050 based on government and related sectoral policies. The results show that in the short‐term, China's copper industry cannot achieve a completely circular economy without additional measures. Aggregate and per capita copper demand are both set to increase substantially, especially in infrastructure, transportation, and buildings. Between 2016 and 2050, total copper demand will increase almost threefold. Copper use in buildings will stabilize before 2050, but the copper stock in infrastructure and transportation will not yet have reached saturation in 2050. The continuous growth of copper stock implies that secondary copper will be able to cover just over 50% of demand in 2050, at best, even with an assumed recycling rate of 90%. Finally, future copper demand depends largely on the lifetime of applications. There is therefore an urgent need to prolong the service life of end‐use products to reduce the amount of materials used, especially in large‐scale applications in buildings and infrastructure.

Suggested Citation

  • Di Dong & Arnold Tukker & Ester Van der Voet, 2019. "Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1363-1380, December.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:6:p:1363-1380
    DOI: 10.1111/jiec.12926
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12926
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    3. Lijun Sun & Yan Feng & Daolin Wang & Chongchong Qi & Xuemin Zeng, 2022. "Influence of CaO on Physical and Environmental Properties of Granulated Copper Slag: Melting Behavior, Grindability and Leaching Behavior," IJERPH, MDPI, vol. 19(20), pages 1-12, October.
    4. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    5. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    7. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    8. Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
    9. Ziyan Gao & Yong Geng & Xianlai Zeng & Xu Tian & Tianli Yao & Xiaoqian Song & Chang Su, 2022. "Evolution of the anthropogenic chromium cycle in China," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 592-608, April.
    10. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    11. Agnese, Pablo & Rios, Francisco, 2024. "Spillover effects of energy transition metals in Chile," Energy Economics, Elsevier, vol. 134(C).
    12. Zhang, Ling & Wang, Liang & Wang, Miaomiao & Yuan, Zengwei, 2024. "Multilevel analysis of copper resource reallocation in the anthroposphere through international trade," Resources Policy, Elsevier, vol. 88(C).
    13. Patrice Christmann & Gaëtan Lefebvre, 2022. "Trends in global mineral and metal criticality: the need for technological foresight," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 641-652, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:6:p:1363-1380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.