IDEAS home Printed from
   My bibliography  Save this article

The Heath, Jarrow, Morton Model


  • Oldrich Alfons Vasicek


Equilibrium models of the term structure of interest rates, such as Vasicek (1977) and Cox et al. (1985), hereafter CIR, determine the equilibrium yield curve by modelling the dynamics of the short-term interest rate, specifying the market price of risk, and solving the resulting partial differential equation for bond prices. Several multi-factor extensions of the Vasicek and CIR framework have been advanced in the recent term structure literature using as additional factors different variables, such as the volatility of interest rates (see, e.g. Longstaff and Schwartz, 1992; Dai and Singleton, 2000), the slope of the term structure (Brennan and Schwartz, 1979; Schaefer and Schwartz, 1984), monetary policy rates (Bakshi and Chen, 1996), and inflation (Pennacchi, 1991; Sun, 1992). Since a no-arbitrage condition must hold in equilibrium, this brief article starts from the stated law of motion for bond prices to tersely show how their implied instantaneous forward rates have an evolution under the pricing measure that is fully characterized by the forward rate volatilities. Thus, the outcome of the article is the fundamental equation of the classic model contributed by Heath et al. (1992), hereafter HJM, which sets off with the study of the forward rates' no-arbitrage dynamics. By doing so, it shows that, despite its different angle and its apparent complex structure, the HJM model is fully consistent and has a clear link with standard equilibrium set-ups like those of the Vasicek and CIR type. This note was written in 1994. Copyright 2007 The Author Journal compilation 2007 Banca Monte dei Paschi di Siena SpA

Suggested Citation

  • Oldrich Alfons Vasicek, 2007. "The Heath, Jarrow, Morton Model," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 36(3), pages 205-207, November.
  • Handle: RePEc:bla:ecnote:v:36:y:2007:i:3:p:205-207

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ecnote:v:36:y:2007:i:3:p:205-207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.