IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i2p627-634.html
   My bibliography  Save this article

An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data

Author

Listed:
  • Donald Hedeker
  • Robin J. Mermelstein
  • Hakan Demirtas

Abstract

No abstract is available for this item.

Suggested Citation

  • Donald Hedeker & Robin J. Mermelstein & Hakan Demirtas, 2008. "An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data," Biometrics, The International Biometric Society, vol. 64(2), pages 627-634, June.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:2:p:627-634
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00924.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    2. Murray Aitkin, 1987. "Modelling Variance Heterogeneity in Normal Regression Using GLIM," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 332-339, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Spörlein & Elmar Schlueter, 2018. "How education systems shape cross-national ethnic inequality in math competence scores: Moving beyond mean differences," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-21, March.
    2. Ian Brunton-Smith & Patrick Sturgis & George Leckie, 2017. "Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location–scale model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 551-568, February.
    3. Emily A. Scherer & Lin Huang & Lydia A. Shrier, 2017. "Application of Correlated Time-to-Event Models to Ecological Momentary Assessment Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 233-244, March.
    4. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    5. Daniel McNeish & Denis Dumas & Dario Torre & Neil Rice, 2022. "Modelling time to maximum competency in medical student progress tests," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2007-2034, October.
    6. Shelley A. Blozis, 2022. "Bayesian two-part multilevel model for longitudinal media use data," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(4), pages 311-328, December.
    7. Olbrich, Lukas & Kosyakova, Yuliya & Sakshaug, Joseph W., 2022. "The reliability of adult self-reported height: The role of interviewers," Economics & Human Biology, Elsevier, vol. 45(C).
    8. Maria Iannario & Maria Kateri & Claudia Tarantola, 2024. "Modelling scale effects in rating data: a Bayesian approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4053-4071, October.
    9. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    10. Steffen Nestler & Sarah Humberg, 2022. "A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 506-532, June.
    11. Stephen R. Martin & Philippe Rast, 2022. "The Reliability Factor: Modeling Individual Reliability with Multiple Items from a Single Assessment," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1318-1342, December.
    12. Christopher A. German & Janet S. Sinsheimer & Jin Zhou & Hua Zhou, 2022. "WiSER: Robust and scalable estimation and inference of within‐subject variances from intensive longitudinal data," Biometrics, The International Biometric Society, vol. 78(4), pages 1313-1327, December.
    13. Patrick Sturgis & Ian Brunton-Smith & Jonathan Jackson, 2021. "Trust in science, social consensus and vaccine confidence," Nature Human Behaviour, Nature, vol. 5(11), pages 1528-1534, November.
    14. Shelley A. Blozis, 2022. "A Latent Variable Mixed-Effects Location Scale Model with an Application to Daily Diary Data," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1548-1570, December.
    15. Hedeker, Donald & Nordgren, Rachel, 2013. "MIXREGLS: A Program for Mixed-Effects Location Scale Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i12).
    16. Manuel Oviedo-de La Fuente & Celestino Ordóñez & Javier Roca-Pardiñas, 2020. "Functional Location-Scale Model to Forecast Bivariate Pollution Episodes," Mathematics, MDPI, vol. 8(6), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    2. Xu, Dengke & Zhang, Zhongzhan, 2013. "A semiparametric Bayesian approach to joint mean and variance models," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1624-1631.
    3. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    4. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    5. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    6. Yeşim Güney & Yetkin Tuaç & Şenay Özdemir & Olcay Arslan, 2021. "Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution," Computational Statistics, Springer, vol. 36(2), pages 805-827, June.
    7. Liucang Wu & Huiqiong Li, 2012. "Variable selection for joint mean and dispersion models of the inverse Gaussian distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(6), pages 795-808, August.
    8. Afrânio M.C. Vieira & Roseli A. Leandro & Clarice G.B. Dem�trio & Geert Molenberghs, 2011. "Double generalized linear model for tissue culture proportion data: a Bayesian perspective," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1717-1731, September.
    9. Shelley A. Blozis & Ricardo Villarreal & Sweta Thota & Nicholas Imparato, 2019. "Using a two-part mixed-effects model for understanding daily, individual-level media behavior," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(4), pages 234-250, December.
    10. Li, Kim-Hung & Chan, Nai Ng, 2000. "Degeneracy in Heteroscedastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 74(2), pages 282-295, August.
    11. George Leckie & Robert French & Chris Charlton & William Browne, 2014. "Modeling Heterogeneous Variance–Covariance Components in Two-Level Models," Journal of Educational and Behavioral Statistics, , vol. 39(5), pages 307-332, October.
    12. Liu-Cang Wu & Zhong-Zhan Zhang & Deng-Ke Xu, 2012. "Variable selection in joint mean and variance models of Box--Cox transformation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(12), pages 2543-2555, August.
    13. Jin-Guan Lin & Li-Xing Zhu & Feng-Chang Xie, 2009. "Heteroscedasticity diagnostics for t linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 59-77, June.
    14. Brown, Sarah & Greene, William H. & Harris, Mark N. & Taylor, Karl, 2015. "An inverse hyperbolic sine heteroskedastic latent class panel tobit model: An application to modelling charitable donations," Economic Modelling, Elsevier, vol. 50(C), pages 228-236.
    15. Qingfeng Liu & Qingsong Yao & Guoqing Zhao, 2020. "Model averaging estimation for conditional volatility models with an application to stock market volatility forecast," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 841-863, August.
    16. Jenkins, Robin R. & Martinez, Salvador A. & Palmer, Karen & Podolsky, Michael J., 2003. "The determinants of household recycling: a material-specific analysis of recycling program features and unit pricing," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 294-318, March.
    17. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    18. Jin-Guan Lin & Li-Xing Zhu & Chun-Zheng Cao & Yong Li, 2011. "Tests of heteroscedasticity and correlation in multivariate t regression models with AR and ARMA errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1509-1531, August.
    19. Luis Eduardo Arango & Carlos Esteban Posada & Alejandro Charry, 2003. "La Participación Laboral en Colombia Según la Nueva Encuesta: ¿ Cambian sus Determinantes?," Borradores de Economia 3048, Banco de la Republica.
    20. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(6), pages 699-724, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:2:p:627-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.