IDEAS home Printed from
   My bibliography  Save this article

Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data


  • J. Zhu
  • J. C. Eickhoff
  • P. Yan


No abstract is available for this item.

Suggested Citation

  • J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
  • Handle: RePEc:bla:biomet:v:61:y:2005:i:3:p:674-683

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jonathan R. Stroud & Peter Müller & Bruno Sansó, 2001. "Dynamic models for spatiotemporal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 673-689.
    2. Huang, Hsin-Cheng & Cressie, Noel, 1996. "Spatio-temporal prediction of snow water equivalent using the Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 22(2), pages 159-175, July.
    3. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    4. Eickhoff, Jens C. & Zhu, Jun & Amemiya, Yasuo, 2004. "On the simulation size and the convergence of the Monte Carlo EM algorithm via likelihood-based distances," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 161-171, April.
    5. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    6. Hao Zhang, 2002. "On Estimation and Prediction for Spatial Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(1), pages 129-136, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marco Minozzo & Clarissa Ferrari, 2012. "Monte Carlo likelihood inference in multivariate model-based geostatistics," Working Papers 33/2012, University of Verona, Department of Economics.
    2. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    3. Marco Minozzo & Clarissa Ferrari, 2013. "Multivariate geostatistical mapping of radioactive contamination in the Maddalena Archipelago (Sardinia, Italy): spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 195-213, April.
    4. Higgs, Megan Dailey & Hoeting, Jennifer A., 2010. "A clipped latent variable model for spatially correlated ordered categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1999-2011, August.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:61:y:2005:i:3:p:674-683. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.