IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v152y2016icp259-275.html
   My bibliography  Save this article

Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models

Author

Listed:
  • Xia, Ye-Mao
  • Tang, Nian-Sheng
  • Gou, Jian-Wei

Abstract

This article presents a generalized linear latent variable model for analyzing multivariate longitudinal data within the hidden Markov model framework. The relationships among multiple items are captured by several common latent factors. The linear coregionalization method is adopted to model the temporal processes of latent variables. The merit of this modeling strategy lies in the fact that the processes among latent variables are nonseparate and codependent from each other. To account for possible heterogeneity and interrelationship among the longitudinal data, a hidden Markov model is introduced to model the transition probabilities across different latent states over time. The Monte Carlo expectation conditional maximization (MCECM) algorithm is developed to estimate unknown parameters in the proposed model. The Wald- and score-type statistics are proposed to test the related dependence of processes. A simulation study is conducted to investigate the performance of the proposed methodology. An example from a longitudinal study of cocaine use is taken to illustrate the proposed methodology.

Suggested Citation

  • Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
  • Handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:259-275
    DOI: 10.1016/j.jmva.2016.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300847
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Heiss, 2008. "Sequential numerical integration in nonlinear state space models for microeconometric panel data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 373-389.
    2. Ibrahim, Joseph G. & Zhu, Hongtu & Tang, Niansheng, 2008. "Model Selection Criteria for Missing-Data Problems Using the EM Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1648-1658.
    3. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    4. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.
    5. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    6. Bartolucci, Francesco & Farcomeni, Alessio, 2009. "A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 816-831.
    7. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
    8. Sanjoy Sinha, 2012. "Robust analysis of longitudinal data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 913-938, October.
    9. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    10. R. Cattell & A. Cattell & R. Rhymer, 1947. "P-technique demonstrated in determining psychophysiological source traits in a normal individual," Psychometrika, Springer;The Psychometric Society, vol. 12(4), pages 267-288, December.
    11. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
    12. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    13. Jian-Qing Shi & Sik-Yum Lee, 1997. "A bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 29-50, March.
    14. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:152:y:2016:i:c:p:259-275. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.