IDEAS home Printed from https://ideas.repec.org/p/anc/wpaper/410.html

A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses

Author

Listed:
  • Francesco BARTOLUCCI

    (Universit… di Perugia, Dipartimento di Economia)

  • Silvia BACCI

    (Universit… di Perugia, Dipartimento di Economia)

  • Claudia PIGINI

    (Universit… Politecnica delle Marche, Dipartimento di Scienze Economiche e Sociali)

Abstract

An alternative to using normally distributed random effects in modeling clustered binary and ordered responses is based on using a nite-mixture. This approach gives rise to a exible class of generalized linear mixed models for item responses, multilevel data, and longitudinal data. A test of misspeci cation for these finite-mixture models is proposed which is based on the comparison between the Marginal and the Conditional Maximum Likelihood estimates of the fixed effects as in the Hausman's test. The asymptotic distribution of the test statistic is derived; it is of chi-squared type with a number of degrees of freedom equal to the number of covariates that vary within the cluster. It turns out that the test is simple to perform and may also be used to select the number of components of the finite-mixture, when this number is unknown. The approach is illustrated by a series of simulations and three empirical examples covering the main fields of application.

Suggested Citation

  • Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
  • Handle: RePEc:anc:wpaper:410
    as

    Download full text from publisher

    File URL: http://docs.dises.univpm.it/web/quaderni/pdf/410.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anc:wpaper:410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maurizio Mariotti (email available below). General contact details of provider: https://edirc.repec.org/data/deancit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.