IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp146-156.html
   My bibliography  Save this article

Variable assessment in latent class models

Author

Listed:
  • Zhang, Q.
  • Ip, E.H.

Abstract

The latent class model provides an important platform for jointly modeling mixed-mode data—i.e., discrete and continuous data with various parametric distributions. Multiple mixed-mode variables are used to cluster subjects into latent classes. While the mixed-mode latent class analysis is a powerful tool for statisticians, few studies are focused on assessing the contribution of mixed-mode variables in discriminating latent classes. Novel measures are derived for assessing both absolute and relative impacts of mixed-mode variables in latent class analysis. Specifically, the expected posterior gradient and the Kolmogorov variation of the posterior distribution, as well as related properties are studied. Numerical results are presented to illustrate the measures.

Suggested Citation

  • Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:146-156
    DOI: 10.1016/j.csda.2014.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000577
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.‐Q. Shi & S.‐Y. Lee, 2000. "Latent variable models with mixed continuous and polytomous data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 77-87.
    2. Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 11-35, February.
    3. Dunson, David B., 2003. "Dynamic Latent Trait Models for Multidimensional Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 555-563, January.
    4. Everitt, B. S., 1988. "A finite mixture model for the clustering of mixed-mode data," Statistics & Probability Letters, Elsevier, vol. 6(5), pages 305-309, April.
    5. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    6. Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
    7. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    8. Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.
    9. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    10. Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mieke Beth Thomeer & Rin Reczek & Lawrence Stacey, 2022. "Childbearing Biographies as a Method to Examine Diversity and Clustering of Childbearing Experiences: A Research Brief," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(4), pages 1405-1415, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    2. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    3. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    4. Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
    5. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    6. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    7. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    8. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    9. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    10. Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
    11. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    12. Ranalli, Monia & Rocci, Roberto, 2017. "Mixture models for mixed-type data through a composite likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 87-102.
    13. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    14. Sunil Kumar & Apurba Vishal Dabgotra, 2021. "A latent class analysis on the usage of mobile phones among management students," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 89-114, March.
    15. Marbac, Matthieu & Vandewalle, Vincent, 2019. "A tractable multi-partitions clustering," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 167-179.
    16. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    17. Ling Zhou & Huazhen Lin & Yi-Chen Lin, 2016. "Education, Intelligence, and Well-Being: Evidence from a Semiparametric Latent Variable Transformation Model for Multiple Outcomes of Mixed Types," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 125(3), pages 1011-1033, February.
    18. Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
    19. Kumar Sunil & Dabgotra Apurba Vishal, 2021. "A latent class analysis on the usage of mobile phones among management students," Statistics in Transition New Series, Statistics Poland, vol. 22(1), pages 89-114, March.
    20. Abby Flynt & Nema Dean, 2019. "Growth Mixture Modeling with Measurement Selection," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 3-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:146-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.