IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp167-179.html
   My bibliography  Save this article

A tractable multi-partitions clustering

Author

Listed:
  • Marbac, Matthieu
  • Vandewalle, Vincent

Abstract

In the framework of model-based clustering, a model allowing several latent class variables is proposed. This model assumes that the distribution of the observed data can be factorized into several independent blocks of variables. Each block is assumed to follow a latent class model (i.e., mixture with conditional independence assumption). The proposed model includes variable selection, as a special case, and is able to cope with the mixed-data setting. The simplicity of the model allows to estimate the repartition of the variables into blocks and the mixture parameters simultaneously, thus avoiding to run EM algorithms for each possible repartition of variables into blocks. For the proposed method, a model is defined by the number of blocks, the number of clusters inside each block and the repartition of variables into block. Model selection can be done with two information criteria, the BIC and the MICL, for which an efficient optimization is proposed. The performances of the model are investigated on simulated and real data. It is shown that the proposed method gives a rich interpretation of the data set at hand (i.e., analysis of the repartition of the variables into blocks and analysis of the clusters produced by each block of variables).

Suggested Citation

  • Marbac, Matthieu & Vandewalle, Vincent, 2019. "A tractable multi-partitions clustering," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 167-179.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:167-179
    DOI: 10.1016/j.csda.2018.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301592
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moustaki, Irini & Papageorgiou, Ioulia, 2005. "Latent class models for mixed variables with applications in Archaeometry," Computational Statistics & Data Analysis, Elsevier, vol. 48(3), pages 659-675, March.
    2. Galimberti, Giuliano & Soffritti, Gabriele, 2007. "Model-based methods to identify multiple cluster structures in a data set," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 520-536, September.
    3. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    4. David J. Hand & Keming Yu, 2001. "Idiot's Bayes—Not So Stupid After All?," International Statistical Review, International Statistical Institute, vol. 69(3), pages 385-398, December.
    5. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    6. Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Vandewalle, 2020. "Multi-Partitions Subspace Clustering," Mathematics, MDPI, vol. 8(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    2. Crook Oliver M. & Gatto Laurent & Kirk Paul D. W., 2019. "Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-20, December.
    3. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    4. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    5. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    6. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    7. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    8. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    9. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    10. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    11. Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
    12. Peña, Daniel & Prieto Fernández, Francisco Javier & Rendon Aguirre, Janeth Carolina, 2017. "Clustering Big Data by Extreme Kurtosis Projections," DES - Working Papers. Statistics and Econometrics. WS 24522, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
    14. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    15. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    16. Gaynor, Sheila & Bair, Eric, 2017. "Identification of relevant subtypes via preweighted sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 139-154.
    17. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    18. Arias-Castro, Ery & Pu, Xiao, 2017. "A simple approach to sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 217-228.
    19. Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
    20. Thierry Chekouo & Alejandro Murua, 2018. "High-dimensional variable selection with the plaid mixture model for clustering," Computational Statistics, Springer, vol. 33(3), pages 1475-1496, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:167-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.