IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01478-1.html
   My bibliography  Save this article

Mixture models for simultaneous classification and reduction of three-way data

Author

Listed:
  • Roberto Rocci

    (Sapienza University)

  • Maurizio Vichi

    (Sapienza University)

  • Monia Ranalli

    (Sapienza University)

Abstract

Finite mixture of Gaussians are often used to classify two- (units and variables) or three- (units, variables and occasions) way data. However, two issues arise: model complexity and capturing the true cluster structure. Indeed, a large number of variables and/or occasions implies a large number of model parameters; while the existence of noise variables (and/or occasions) could mask the true cluster structure. The approach adopted in the present paper is to reduce the number of model parameters by identifying a sub-space containing the information needed to classify the observations. This should also help in identifying noise variables and/or occasions. The maximum likelihood model estimation is carried out through an EM-like algorithm. The effectiveness of the proposal is assessed through a simulation study and an application to real data.

Suggested Citation

  • Roberto Rocci & Maurizio Vichi & Monia Ranalli, 2025. "Mixture models for simultaneous classification and reduction of three-way data," Computational Statistics, Springer, vol. 40(1), pages 469-507, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01478-1
    DOI: 10.1007/s00180-024-01478-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01478-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01478-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    2. Wei‐Chien Chang, 1983. "On Using Principal Components before Separating a Mixture of Two Multivariate Normal Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(3), pages 267-275, November.
    3. Vermunt, Jeroen K., 2007. "A hierarchical mixture model for clustering three-way data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5368-5376, July.
    4. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    5. Roberto Rocci & Maurizio Vichi, 2005. "Three-Mode Component Analysis with Crisp or Fuzzy Partition of Units," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 715-736, December.
    6. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    7. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    8. Kaye Basford & Geoffrey McLachlan, 1985. "The mixture method of clustering applied to three-way data," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 109-125, December.
    9. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    10. Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
    11. Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
    12. Tomarchio, Salvatore D. & Punzo, Antonio & Bagnato, Luca, 2020. "Two new matrix-variate distributions with application in model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    13. Sarkar, Shuchismita & Zhu, Xuwen & Melnykov, Volodymyr & Ingrassia, Salvatore, 2020. "On parsimonious models for modeling matrix data," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    14. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    15. Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
    16. Maurizio Vichi & Roberto Rocci & Henk A.L. Kiers, 2007. "Simultaneous Component and Clustering Models for Three-way Data: Within and Between Approaches," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 71-98, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
    2. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    3. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    4. Pieter C. Schoonees & Patrick J. F. Groenen & Michel Velden, 2022. "Least-squares bilinear clustering of three-way data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 1001-1037, December.
    5. Fabio Centofanti & Antonio Lepore & Biagio Palumbo, 2024. "Sparse and smooth functional data clustering," Statistical Papers, Springer, vol. 65(2), pages 795-825, April.
    6. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    7. Crook Oliver M. & Gatto Laurent & Kirk Paul D. W., 2019. "Fast approximate inference for variable selection in Dirichlet process mixtures, with an application to pan-cancer proteomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-20, December.
    8. Dirk Depril & Iven Mechelen & Tom Wilderjans, 2012. "Lowdimensional Additive Overlapping Clustering," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 297-320, October.
    9. Matthieu Marbac & Mohammed Sedki & Tienne Patin, 2020. "Variable Selection for Mixed Data Clustering: Application in Human Population Genomics," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 124-142, April.
    10. Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
    11. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    12. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    13. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    14. Alex Sharp & Glen Chalatov & Ryan P. Browne, 2023. "A dual subspace parsimonious mixture of matrix normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 801-822, September.
    15. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    16. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    17. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    18. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    19. Fulvia Pennoni & Francesco Bartolucci & Silvia Pandolfi, 2024. "Variable Selection for Hidden Markov Models with Continuous Variables and Missing Data," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 568-589, November.
    20. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01478-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.