IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v57y2001i1p302-308.html
   My bibliography  Save this article

Factor Analytic Models of Clustered Multivariate Data with Informative Censoring

Author

Listed:
  • David B. Dunson
  • Sally D. Perreault

Abstract

Summary. This article describes a general class of factor analytic models for the analysis of clustered multivariate data in the presence of informative missingness. We assume that there are distinct sets of cluster‐level latent variables related to the primary outcomes and to the censoring process, and we account for dependency between these latent variables through a hierarchical model. A linear model is used to relate covariates and latent variables to the primary outcomes for each subunit. A generalized linear model accounts for covariate and latent variable effects on the probability of censoring for subunits within each cluster. The model accounts for correlation within clusters and within subunits through a flexible factor analytic framework that allows multiple latent variables and covariate effects on the latent variables. The structure of the model facilitates implementation of Markov chain Monte Carlo methods for posterior estimation. Data from a spermatotoxicity study are analyzed to illustrate the proposed approach.

Suggested Citation

  • David B. Dunson & Sally D. Perreault, 2001. "Factor Analytic Models of Clustered Multivariate Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 302-308, March.
  • Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:302-308
    DOI: 10.1111/j.0006-341X.2001.00302.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0006-341X.2001.00302.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0006-341X.2001.00302.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. B. Dunson & C. R. Weinberg & S. D. Perreault & R. E. Chapin, 1999. "Summarizing the Motion of Self-Propelled Cells: Applications to Sperm Motility," Biometrics, The International Biometric Society, vol. 55(2), pages 537-543, June.
    2. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    3. D. B. Dunson & G. E. Dinse, 2001. "Bayesian incidence analysis of animal tumorigenicity data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 125-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    2. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    3. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    4. Lu, Zudi & Zhang, Wenyang, 2012. "Semiparametric likelihood estimation in survival models with informative censoring," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 187-211.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    3. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    4. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    5. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    6. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    7. Tsonaka, R. & Moustaki, I., 2007. "Parameter constraints in generalized linear latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4164-4177, May.
    8. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    9. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    10. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    11. Isabella Sulis & Mariano Porcu, 2012. "Comparing degree programs from students’ assessments: A LCRA-based adjusted composite indicator," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 193-209, June.
    12. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    13. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    14. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    15. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    16. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    17. Silvia Cagnone & Cinzia Viroli, 2018. "Multivariate latent variable transition models of longitudinal mixed data: an analysis on alcohol use disorder," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1399-1418, November.
    18. Robin Fuchs & Denys Pommeret & Cinzia Viroli, 2022. "Mixed Deep Gaussian Mixture Model: a clustering model for mixed datasets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 31-53, March.
    19. Silvia Cagnone & Cinzia Viroli, 2014. "A factor mixture model for analyzing heterogeneity and cognitive structure of dementia," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(1), pages 1-20, January.
    20. Jonathan L. French & Joseph G. Ibrahim, 2002. "Bayesian Methods for a Three–State Model for Rodent Carcinogenicity Studies," Biometrics, The International Biometric Society, vol. 58(4), pages 906-916, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:302-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.