IDEAS home Printed from https://ideas.repec.org/a/bjc/journl/v11y2024i12p698-713.html
   My bibliography  Save this article

Forecasting Inflation Rate Using the ARIMA Model: Zambia’s Perspective from 2023 to 2043

Author

Listed:
  • Julius Zulu

    (The Bed-Rock Research Consultancy, Department of Research Services, Lusaka, Zambia)

  • Gardner Mwansa

    (Walter Sisulu University, Department of Information Technology, South Africa)

  • Kenny Changwe

    (Kabamba Secondary School, Serenje, Zambia)

Abstract

The study sought to forecast Zambia’s inflation rate from 2023 to 2043 using the Autoregressive Integrated Moving Average Model (ARIMA). Using the Box–Jenkins modeling method, the study utilized 37 yearly time series data from 1986 to 2022 to forecast the next 20 years by using ARIMA Model. The ARIMA (4, 1, 2) model was used as being the one with the most significant parameters, the least log likelihood, Sigma, and the least Akaike and Bayesian information criteria. The ARIMA (4, 1, 2) model was also used due to its accuracy, mathematical soundness, and flexibility, thanks to the inclusion of AR and MA terms over a regression analysis. The results show that the value of the Zambia’s inflation rate is predicted to rise by 47.27% in 20 years.

Suggested Citation

  • Julius Zulu & Gardner Mwansa & Kenny Changwe, 2024. "Forecasting Inflation Rate Using the ARIMA Model: Zambia’s Perspective from 2023 to 2043," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(12), pages 698-713, December.
  • Handle: RePEc:bjc:journl:v:11:y:2024:i:12:p:698-713
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-11-issue-12/698-713.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijrsi/articles/forecasting-inflation-rate-using-the-arima-model-zambias-perspective-from-2023-to-2043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Phiri, Andrew, 2013. "Inflation and Economic Growth in Zambia: A Threshold Autoregressive (TAR) Econometric Approach," MPRA Paper 52093, University Library of Munich, Germany.
    3. repec:aer:wpaper:484 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    2. Laurence T Kell & Iago Mosqueira & Henning Winker & Rishi Sharma & Toshihide Kitakado & Massimiliano Cardinale, 2024. "Empirical validation of integrated stock assessment models to ensuring risk equivalence: A pathway to resilient fisheries management," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-21, July.
    3. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    4. Das, Prashant & Füss, Roland & Hanle, Benjamin & Russ, Isabel Nina, 2020. "The cross-over effect of irrational sentiments in housing, commercial property, and stock markets," Journal of Banking & Finance, Elsevier, vol. 114(C).
    5. Helder Rojas & David Dias, 2020. "Transmission of macroeconomic shocks to risk parameters: Their uses in stress testing," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 353-380, May.
    6. Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
    7. Jiang Wu & Jianzhong Zhou & Lu Chen & Lei Ye, 2015. "Coupling Forecast Methods of Multiple Rainfall–Runoff Models for Improving the Precision of Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5091-5108, November.
    8. Pi Guo & Tao Liu & Qin Zhang & Li Wang & Jianpeng Xiao & Qingying Zhang & Ganfeng Luo & Zhihao Li & Jianfeng He & Yonghui Zhang & Wenjun Ma, 2017. "Developing a dengue forecast model using machine learning: A case study in China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-22, October.
    9. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    10. Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
    11. Miriam Steurer & Robert Hill, 2019. "Metrics for Evaluating the Performance of Automated Valuation Models," Graz Economics Papers 2019-02, University of Graz, Department of Economics.
    12. Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
    13. Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
    14. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    15. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    16. Bożena Gajdzik & Radosław Wolniak & Anna Sączewska-Piotrowska & Wiesław Wes Grebski, 2025. "Polish Steel Production Under Conditions of Decarbonization—Steel Volume Forecasts Using Time Series and Multiple Linear Regression," Energies, MDPI, vol. 18(7), pages 1-38, March.
    17. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    18. Michael Kostmann & Wolfgang K. Härdle, 2019. "Forecasting in Blockchain-Based Local Energy Markets," Energies, MDPI, vol. 12(14), pages 1-27, July.
    19. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
    20. Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
    21. Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:12:p:698-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.