Carbon emissions trading price forecasts by multi-perspective fusion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liu, Xiaoqian & Wang, Chang'an & Wu, Haitao & Yang, Cunyi & Albitar, Khaldoon, 2023. "The impact of the new energy demonstration city construction on energy consumption intensity: Exploring the sustainable potential of China's firms," Energy, Elsevier, vol. 283(C).
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Huimin Bi & Hao Xiao & Kejuan Sun, 2019. "The Impact of Carbon Market and Carbon Tax on Green Growth Pathway in China: A Dynamic CGE Model Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(6), pages 1312-1325, May.
- Gary Koop & Lise Tole, 2013.
"Forecasting the European carbon market,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
- Koop, Gary & Tole, Lise, 2011. "Forecasting the European Carbon Market," SIRE Discussion Papers 2011-20, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Lise Tole, 2011. "Forecasting the European Carbon Market," Working Papers 1110, University of Strathclyde Business School, Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Jinlong & Shi, Yang & Song, Xiaowei, 2024. "The dynamics of digitalization and natural resources in shaping the sustainable development agenda in BRICS-T nations," Resources Policy, Elsevier, vol. 91(C).
- Wei, Zhanjun & Nie, Chen, 2024. "The dynamics of natural resources, renewable energy, and financial development on achieving ecological sustainability," Resources Policy, Elsevier, vol. 95(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
- Weibao Sun & Yafang Gao & Xuemei Yang & Yalong Zhang & Haolin Hu, 2025. "Carbon Price Forecasting and Market Characteristics Analysis in China: An Integrated Approach Using Overall and Market-Specific Models," Sustainability, MDPI, vol. 17(12), pages 1-25, June.
- Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
- Haoyu Chen & Qunli Wu & Chonghao Han, 2025. "Carbon Price Point and Interval-Valued Prediction Based on a Novel Hybrid Model," Energies, MDPI, vol. 18(5), pages 1-31, February.
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Filippos Ioannidis & Kyriaki Kosmidou & Panayiotis Theodossiou, 2025. "Spillovers Into the German Electricity Market From the Gas, Coal, and CO2 Emissions Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(9), pages 1253-1277, September.
- Liu, Jiamin & Zhang, Jiaoning & Ma, Xiaoyu & Zhao, Bin & Zhang, Mengyu, 2024. "The road to sustainable development: Can the new energy demonstration city policy promote the industrial structure transformation?," Renewable Energy, Elsevier, vol. 237(PB).
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Cao, Jin-Hui & Xie, Chi & Zhou, Yang & Wang, Gang-Jin & Zhu, You, 2025. "Forecasting carbon price: A novel multi-factor spatial-temporal GNN framework integrating Graph WaveNet and self-attention mechanism," Energy Economics, Elsevier, vol. 144(C).
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bba:j00004:v:3:y:2024:i:2:p:13-25:d:266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ramona Wang (email available below). General contact details of provider: https://www.anserpress.org .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/bba/j00004/v3y2024i2p13-25d266.html