Advanced Search
MyIDEAS: Login to save this paper or follow this series

Use of propensity scores in non-linear response models: The case for health care expenditures

Contents:

Author Info

  • Basu, A
  • Polsky, D
  • Manning, W G

Abstract

Under the assumption of no unmeasured confounders, a large literature exists on methods that can be used to estimating average treatment effects (ATE) from observational data and that spans regression models, propensity score adjustments using stratification, weighting or regression and even the combination of both as in doubly-robust estimators. However, comparison of these alternative methods is sparse in the context of data generated via nonlinear models where treatment effects are heterogeneous, such as is in the case of healthcare cost data. In this paper, we compare the performance of alternative regression and propensity score-based estimators in estimating average treatment effects on outcomes that are generated via non-linear models. Using simulations, we find that in moderate size samples (n= 5000), balancing on estimated propensity scores balances the covariate means across treatment arms but fails to balance higher-order moments and covariances amongst covariates, raising concern about its use in non-linear outcomes generating mechanisms. We also find that besides inverse-probability weighting (IPW) with propensity scores, no one estimator is consistent under all data generating mechanisms. The IPW estimator is itself prone to inconsistency due to misspecification of the model for estimating propensity scores. Even when it is consistent, the IPW estimator is usually extremely inefficient. Thus care should be taken before naively applying any one estimator to estimate ATE in these data. We develop a recommendation for an algorithm which may help applied researchers to arrive at the optimal estimator. We illustrate the application of this algorithm and also the performance of alternative methods in a cost dataset on breast cancer treatment.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.york.ac.uk/media/economics/documents/herc/wp/08_11.pdf
File Function: Main text
Download Restriction: no

Bibliographic Info

Paper provided by HEDG, c/o Department of Economics, University of York in its series Health, Econometrics and Data Group (HEDG) Working Papers with number 08/11.

as in new window
Length:
Date of creation: May 2008
Date of revision:
Handle: RePEc:yor:hectdg:08/11

Contact details of provider:
Postal: HEDG/HERC, Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
Phone: (0)1904 323776
Fax: (0)1904 323759
Email:
Web page: http://www.york.ac.uk/economics/postgrad/herc/hedg/
More information through EDIRC

Related research

Keywords: Propensity score; Non-linear regression; average treatment effect; Healthcare costs;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Manning, Willard G. & Mullahy, John, 2001. "Estimating log models: to transform or not to transform?," Journal of Health Economics, Elsevier, vol. 20(4), pages 461-494, July.
  2. Jack Hadley & Daniel Polsky & Jeanne S. Mandelblatt & Jean M. Mitchell & Jane C. Weeks & Qin Wang & Yi-Ting Hwang, 2003. "An exploratory instrumental variable analysis of the outcomes of localized breast cancer treatments in a medicare population," Health Economics, John Wiley & Sons, Ltd., vol. 12(3), pages 171-186.
  3. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-18, May.
  4. Heckman, James & Navarro-Lozano, Salvador, 2003. "Using matching, instrumental variables and control functions to estimate economic choice models," Working Paper Series 2003:4, IFAU - Institute for Evaluation of Labour Market and Education Policy.
  5. Michael LECHNER, 2008. "A Note on the Common Support Problem in Applied Evaluation Studies," Annales d'Economie et de Statistique, ENSAE, issue 91-92, pages 217-235.
  6. Coyte, Peter C. & Young, Wendy & Croxford, Ruth, 2000. "Costs and outcomes associated with alternative discharge strategies following joint replacement surgery: analysis of an observational study using a propensity score," Journal of Health Economics, Elsevier, vol. 19(6), pages 907-929, November.
  7. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
  8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, 07.
  9. Rajeev H. Dehejia, 2002. "Program evaluation as a decision problem," Discussion Papers 0102-23, Columbia University, Department of Economics.
  10. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
  11. Manning, Willard G., 1998. "The logged dependent variable, heteroscedasticity, and the retransformation problem," Journal of Health Economics, Elsevier, vol. 17(3), pages 283-295, June.
  12. James J. Heckman & Jeffrey A. Smith, 1998. "Evaluating the Welfare State," NBER Working Papers 6542, National Bureau of Economic Research, Inc.
  13. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
  14. Manning, Willard G, et al, 1987. "Health Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment," American Economic Review, American Economic Association, vol. 77(3), pages 251-77, June.
  15. Joshua Angrist & Jinyong Hahn, 2004. "When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 58-72, February.
  16. Nandita Mitra & Alka Indurkhya, 2005. "A propensity score approach to estimating the cost-effectiveness of medical therapies from observational data," Health Economics, John Wiley & Sons, Ltd., vol. 14(8), pages 805-815.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Albert Okunade & Andrew Hussey & Mustafa Karakus, 2009. "Overweight Adolescents and On-time High School Graduation: Racial and Gender Disparities," Atlantic Economic Journal, International Atlantic Economic Society, vol. 37(3), pages 225-242, September.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:08/11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jane Rawlings).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.