IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v17y2014i3p284-301.html
   My bibliography  Save this article

A predictive modeling approach to increasing the economic effectiveness of disease management programs

Author

Listed:
  • Andreas Bayerstadler
  • Franz Benstetter
  • Christian Heumann
  • Fabian Winter

Abstract

Predictive Modeling (PM) techniques are gaining importance in the worldwide health insurance business. Modern PM methods are used for customer relationship management, risk evaluation or medical management. This article illustrates a PM approach that enables the economic potential of (cost-)effective disease management programs (DMPs) to be fully exploited by optimized candidate selection as an example of successful data-driven business management. The approach is based on a Generalized Linear Model (GLM) that is easy to apply for health insurance companies. By means of a small portfolio from an emerging country, we show that our GLM approach is stable compared to more sophisticated regression techniques in spite of the difficult data environment. Additionally, we demonstrate for this example of a setting that our model can compete with the expensive solutions offered by professional PM vendors and outperforms non-predictive standard approaches for DMP selection commonly used in the market. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Andreas Bayerstadler & Franz Benstetter & Christian Heumann & Fabian Winter, 2014. "A predictive modeling approach to increasing the economic effectiveness of disease management programs," Health Care Management Science, Springer, vol. 17(3), pages 284-301, September.
  • Handle: RePEc:kap:hcarem:v:17:y:2014:i:3:p:284-301
    DOI: 10.1007/s10729-013-9246-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-013-9246-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-013-9246-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frees, Edward W. & Young, Virginia R. & Luo, Yu, 1999. "A longitudinal data analysis interpretation of credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 229-247, May.
    2. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
    3. John Mullahy, 1998. "Much Ado About Two: Reconsidering Retransformation and the Two-Part Model in Health Economics," NBER Technical Working Papers 0228, National Bureau of Economic Research, Inc.
    4. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    5. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149.
    6. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    7. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    8. Manning, Willard G., 1998. "The logged dependent variable, heteroscedasticity, and the retransformation problem," Journal of Health Economics, Elsevier, vol. 17(3), pages 283-295, June.
    9. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    10. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
    11. Manning, Willard G. & Mullahy, John, 2001. "Estimating log models: to transform or not to transform?," Journal of Health Economics, Elsevier, vol. 20(4), pages 461-494, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galina Besstremyannaya, 2012. "Estimating income equity in social health insurance system," Working Papers w0172, New Economic School (NES).
    2. Besstremyannaya, Galina, 2017. "Measuring income equity in the demand for healthcare with finite mixture models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 5-29.
    3. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    4. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    5. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    6. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    7. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2015. "The influence of obesity and overweight on medical costs: a panel data perspective," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(2), pages 161-173, March.
    8. Jay Dev Dubey, 2021. "Measuring Income Elasticity of Healthcare-Seeking Behavior in India: A Conditional Quantile Regression Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 767-793, December.
    9. Galina Besstremyannaya, 2012. "Estimating income equity in social health insurance system," Working Papers w0172, Center for Economic and Financial Research (CEFIR).
    10. Hao Yu, 2017. "China’s medical savings accounts: an analysis of the price elasticity of demand for health care," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(6), pages 773-785, July.
    11. Cantoni, Eva & Ronchetti, Elvezio, 2006. "A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures," Journal of Health Economics, Elsevier, vol. 25(2), pages 198-213, March.
    12. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    13. Farrell, Susan & Manning, Willard G. & Finch, Michael D., 2003. "Alcohol dependence and the price of alcoholic beverages," Journal of Health Economics, Elsevier, vol. 22(1), pages 117-147, January.
    14. Kathleen Carey & Theodore Stefos, 2011. "Measuring the cost of hospital adverse patient safety events," Health Economics, John Wiley & Sons, Ltd., vol. 20(12), pages 1417-1430, December.
    15. Steven C. Hill & G. Edward Miller, 2010. "Health expenditure estimation and functional form: applications of the generalized gamma and extended estimating equations models," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 608-627, May.
    16. Brilleman, Samuel L. & Gravelle, Hugh & Hollinghurst, Sandra & Purdy, Sarah & Salisbury, Chris & Windmeijer, Frank, 2014. "Keep it simple? Predicting primary health care costs with clinical morbidity measures," Journal of Health Economics, Elsevier, vol. 35(C), pages 109-122.
    17. Samuel L Brilleman & Hugh Gravelle & Sandra Hollinghurst & Sarah Purdy & Chris Salisbury & Frank Windmeijer, 2011. "Keep it Simple? Predicting Primary Health Care Costs with Measures of Morbidity and Multimorbidity," Working Papers 072cherp, Centre for Health Economics, University of York.
    18. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:17:y:2014:i:3:p:284-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.