IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-355063.html
   My bibliography  Save this paper

Transport policies in polycentric cities

Author

Listed:
  • Quentin Max David
  • Moez Kilani

Abstract

This paper studies how transit lines should be developed in polycentric cities. In several growing metropolitan areas, local authorities have to decide whether to rely on existing radial lines connecting suburban areas to the city-center, or to develop new circular lines directly connecting suburban areas. An efficient transit system aims at reducing external costs of transport (congestion and pollution) by attracting private car users. We study the effect of two types of policies on the modal split. First, we compare the effect of three administration regimes (public, semi-public and private) on the external costs of transport. Second, we consider the opening of a new transit line directly linking the suburbs. We find that it reduces aggregate user cost but is not Pareto-improving unless crowding is high on existing transit lines. Our analysis is complemented by a numerical illustration based on an open source Fortran program. This tool needs a relatively small set of data and can be used by policy makers wishing to investigate the pricing reforms or the possibility of opening a new transit line for a specific case study.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Quentin Max David & Moez Kilani, 2022. "Transport policies in polycentric cities," ULB Institutional Repository 2013/355063, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/355063
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/355063/3/2022David-Kilani.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anas, Alex & Timilsina, Govinda R., 2015. "Offsetting the CO2 locked-in by roads: Suburban transit and core densification as antidotes," Economics of Transportation, Elsevier, vol. 4(1), pages 37-49.
    2. Guillaume Chapelle & Etienne Wasmer & Pierre-Henri Bono, 2021. "An urban labor market with frictional housing markets: theory and an application to the Paris urban area," Journal of Economic Geography, Oxford University Press, vol. 21(1), pages 97-126.
    3. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    4. Kilani, Moez & de Palma, André & Proost, Stef, 2017. "Are users better-off with new transit lines?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 95-105.
    5. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    6. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    7. Small, Kenneth A & Song, Shunfeng, 1992. ""Wasteful" Commuting: A Resolution," Journal of Political Economy, University of Chicago Press, vol. 100(4), pages 888-898, August.
    8. Aguiléra, Anne & Wenglenski, Sandrine & Proulhac, Laurent, 2009. "Employment suburbanisation, reverse commuting and travel behaviour by residents of the central city in the Paris metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 685-691, August.
    9. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    10. David, Quentin & Foucart, Renaud, 2014. "Modal choice and optimal congestion," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 12-20.
    11. Brueckner, Jan K., 2011. "Lectures on Urban Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262016362, December.
    12. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    13. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    14. Kilani, Moez & Proost, Stef & van der Loo, Saskia, 2014. "Road pricing and public transport pricing reform in Paris: Complements or substitutes?," Economics of Transportation, Elsevier, vol. 3(2), pages 175-187.
    15. Kraus, Marvin, 2012. "Road pricing with optimal mass transit," Journal of Urban Economics, Elsevier, vol. 72(2), pages 81-86.
    16. Pengjun Zhao & Bin Lu & Gert de Roo, 2011. "The impact of urban growth on commuting patterns in a restructuring city: Evidence from Beijing," Papers in Regional Science, Wiley Blackwell, vol. 90(4), pages 735-754, November.
    17. Lindsey, Robin, 2012. "Road pricing and investment," Economics of Transportation, Elsevier, vol. 1(1), pages 49-63.
    18. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    19. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    20. Jenelius, Erik, 2012. "The value of travel time variability with trip chains, flexible scheduling and correlated travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 762-780.
    21. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    22. White, M.J., 1988. "Urban Commuting Journeys Are Not Wasteful," Papers 88-10, Michigan - Center for Research on Economic & Social Theory.
    23. Daniel J. Graham, 2007. "Agglomeration, Productivity and Transport Investment," Journal of Transport Economics and Policy, University of Bath, vol. 41(3), pages 317-343, September.
    24. Pierre-Henri Bono & Quentin Max David & Rodolphe Desbordes & Loriane Py, 2022. "Metro infrastructure and metropolitan attractiveness," ULB Institutional Repository 2013/355380, ULB -- Universite Libre de Bruxelles.
    25. F. H. Knight, 1924. "Some Fallacies in the Interpretation of Social Cost," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 38(4), pages 582-606.
    26. Genevieve Giuliano & Kenneth A. Small, 1993. "Is the Journey to Work Explained by Urban Structure?," Urban Studies, Urban Studies Journal Limited, vol. 30(9), pages 1485-1500, November.
    27. de Palma, André & Kilani, Moez & Lindsey, Robin, 2007. "Maintenance, service quality and congestion pricing with competing roads," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 573-591, June.
    28. White, Michelle J, 1988. "Urban Commuting Journeys Are Not "Wasteful."," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 1097-1110, October.
    29. de Palma, André & Kilani, Moez & Lindsey, Robin, 2008. "The merits of separating cars and trucks," Journal of Urban Economics, Elsevier, vol. 64(2), pages 340-361, September.
    30. Tabuchi Takatoshi, 1993. "Bottleneck Congestion and Modal Split," Journal of Urban Economics, Elsevier, vol. 34(3), pages 414-431, November.
    31. W. Burke Jackson & James V. Jucker, 1982. "An Empirical Study of Travel Time Variability and Travel Choice Behavior," Transportation Science, INFORMS, vol. 16(4), pages 460-475, November.
    32. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David, Quentin & Foucart, Renaud, 2014. "Modal choice and optimal congestion," Regional Science and Urban Economics, Elsevier, vol. 48(C), pages 12-20.
    2. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    3. Shu‐Hen Chiang, 2012. "The Source of Metropolitan Growth: The Role of Commuting," Growth and Change, Wiley Blackwell, vol. 43(1), pages 143-166, March.
    4. Xiao, Yu & Coulombel, Nicolas & Palma, André de, 2017. "The valuation of travel time reliability: does congestion matter?," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 113-141.
    5. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
    6. Murphy, Enda, 2009. "Excess commuting and modal choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(8), pages 735-743, October.
    7. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    8. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    9. André de Palma & Robin Lindsey & Guillaume Monchambert, 2017. "The Economics of Crowding in Public Transport," Post-Print hal-01203310, HAL.
    10. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    11. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    12. Cheng, Lin & Chen, Chen & Xiu, Chunliang, 2017. "Excess kindergarten travel in Changchun, Northeast China: A measure of residence-kindergarten spatial mismatch," Journal of Transport Geography, Elsevier, vol. 60(C), pages 208-216.
    13. Myung-Jin Jun & Simon Choi & Frank Wen & Ki-Hyun Kwon, 2018. "Effects of urban spatial structure on level of excess commutes: A comparison between Seoul and Los Angeles," Urban Studies, Urban Studies Journal Limited, vol. 55(1), pages 195-211, January.
    14. Manuel Suárez & Masanori Murata & Javier Delgado Campos, 2016. "Why do the poor travel less? Urban structure, commuting and economic informality in Mexico City," Urban Studies, Urban Studies Journal Limited, vol. 53(12), pages 2548-2566, September.
    15. Niedzielski, Michael A. & Horner, Mark W. & Xiao, Ningchuan, 2013. "Analyzing scale independence in jobs-housing and commute efficiency metrics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 129-143.
    16. Guillaume Monchambert & Stef Proost, 2019. "How Efficient are Intercity Railway Prices and Frequencies in Europe?: Comparing a Corridor in Belgium and in France," Journal of Transport Economics and Policy, University of Bath, vol. 53(4), pages 323-32-347.
    17. Mark W. Horner, 2008. "`Optimal' Accessibility Landscapes? Development of a New Methodology for Simulating and Assessing Jobs—Housing Relationships in Urban Regions," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1583-1602, July.
    18. Maria Börjesson & Chau Man Fung & Stef Proost, 2015. "Should buses still be subsidized in Stockholm?," Working Papers of Department of Economics, Leuven 518627, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    19. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    20. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/355063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.