Advanced Search
MyIDEAS: Login

Probabilistic learning and emergent coordination in a non-cooperative game with heterogeneous agents: An exploration of minority game dynamics

Contents:

Author Info

  • Giulio Bottazzi
  • Giovanna Devetag

Abstract

In this paper we present results of simulations in which we use a general probabilistic learning model to describe the behavior of heterogeneous agents in a non-cooperative game where it is rewarding to be in the minority group. The chosen probabilistic model belongs to a well-known class of learning models developed in evolutionary game theory and experimental economics, which have been widely applied to describe human behavior in experimental games. We test the aggregate properties of this population of agents (i.e., presence of emergent cooperation, asymptotic stability, speed of convergence to equilibrium) as a function of the degree of randomness in the agents' behavior. In this way we are able to identify what properties of the system are sensitive to the precise characteristics of the learning rule and what properties on the contrary can be considered as generic features of the game. Our results indicate that, when the degree of inertia of the learning rule increases, the market reaches a higher level of allocative and informational efficiency, although on a longer time scale.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.unitn.it/files/download/19388/rock007.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.unitn.it/files/download/19388/rock007.pdf [301 Moved Permanently]--> http://web.unitn.it/files/download/19388/rock007.pdf). If this is indeed the case, please notify (Loris Gaio)
Download Restriction: no

Bibliographic Info

Paper provided by Department of Computer and Management Sciences, University of Trento, Italy in its series ROCK Working Papers with number 007.

as in new window
Length: 21 pages
Date of creation: Jan 1999
Date of revision: 12 Jun 2008
Handle: RePEc:trt:rockwp:007

Contact details of provider:
Postal: via Inama, 5 -- I-38100 Trento TN
Phone: +39-0461-882126
Fax: +39-0461-882124
Email:
Web page: http://www.unitn.it/disa
More information through EDIRC

Order Information:
Postal: DISA Università degli Studi di Trento via Inama, 5 I-38122 Trento TN Italy
Email:
Web: http://www.unitn.it/disa

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
  2. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
  3. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:trt:rockwp:007. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Loris Gaio).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.