IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03088084.html
   My bibliography  Save this paper

Representations of the Forest Sector in Economic Models
[Les représentations du secteur forestier dans les modèles économiques]

Author

Listed:
  • Miguel Riviere

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Sylvain Caurla

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Forest sector models encompass a set of models used for forest-related policy analysis. As representations of a complex human-environment system, they incorporate multiple facts from their target, the forest sector, which is usually understood as comprising forests, forestry and forest industries. Even though they pursue similar goals and display similarities, forest sector models show divergences in their representation of the forest sector. In this paper, we question and discuss the determinants behind the representation of facts in forest sector models, and try to highlight the reasons behind modelling practices. The forest sector's boundaries are often unclear, and it comprises facts of different natures for which dynamics take place on different time and spatial scales. As a result, modelling practices vary, and both empirical data and theory play varying roles in representing facts. Early models were developed in the 1970s and find their roots in traditional forest economics, the economics of natural resources, econometrics, but also transportation problems and system dynamics. Because they developed within a small but well-connected field, early efforts were influential in shaping current practices. Numerical simulation and scenario analysis are used as means of enquiry into model worlds: in that, forest sector models are a classical example of model use in economics, and they constitute a good example of how simulation models have been developed for decision-support purposes. Forest sector modelling is heavily influenced by its applied uses, and policy contexts shape both questions asked and how facts are introduced in scenario storylines. Understanding the determinants of modelling choices is necessary to ensure sound modelling practices. Forest sector models are now used to address issues wider than timber production. Practices turn to integration into multi-model frameworks to expand the boundaries of the system studied, but also towards the use of qualitative methods as new ways of representing facts, in particular deep changes that quantitative models may not be able to capture.

Suggested Citation

  • Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
  • Handle: RePEc:hal:journl:hal-03088084
    DOI: 10.4000/oeconomia.9418
    Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03088084
    as

    Download full text from publisher

    File URL: https://hal.inrae.fr/hal-03088084/document
    Download Restriction: no

    File URL: https://libkey.io/10.4000/oeconomia.9418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    2. Schwarzbauer, Peter & Weinfurter, Stefan & Stern, Tobias & Koch, Sebastian, 2013. "Economic crises: Impacts on the forest-based sector and wood-based energy use in Austria," Forest Policy and Economics, Elsevier, vol. 27(C), pages 13-22.
    3. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    4. Stephen Devadoss & Angel H. Aguiar & Steven R. Shook & Jim Araji, 2005. "A Spatial Equilibrium Analysis of U.S.–Canadian Disputes on the World Softwood Lumber Market," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(2‐3), pages 177-192, June.
    5. Roger D. Norton & Gerhard W. Schiefer, 1980. "Agricultural sector programming models: A review," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 7(3), pages 229-265.
    6. Fortes, Patrícia & Alvarenga, António & Seixas, Júlia & Rodrigues, Sofia, 2015. "Long-term energy scenarios: Bridging the gap between socio-economic storylines and energy modeling," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 161-178.
    7. Peter, Brian & Niquidet, Kurt, 2016. "Estimates of residual fibre supply and the impacts of new bioenergy capacity from a forest sector transportation model of the Canadian Prairie Provinces," Forest Policy and Economics, Elsevier, vol. 69(C), pages 62-72.
    8. Lauri, Pekka & Forsell, Nicklas & Gusti, Mykola & Havlík, Petr & Obersteiner, Michael, 2019. "Global Woody Biomass Harvest Volumes and Forest Area Use Under Different SSP-RCP Scenarios," Journal of Forest Economics, now publishers, vol. 34(3-4), pages 285-309, November.
    9. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barthès, Julien & Barkaoui, Ahmed, 2013. "Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 450-461.
    10. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    11. Sauquet, Alexandre & Lecocq, Franck & Delacote, Philippe & Caurla, Sylvain & Barkaoui, Ahmed & Garcia, Serge, 2011. "Estimating Armington elasticities for sawnwood and application to the French Forest Sector Model," Resource and Energy Economics, Elsevier, vol. 33(4), pages 771-781.
    12. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    13. Alexandre Sauquet & Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Franck Lecocq, 2011. "Paying for forest carbon or stimulating fuel wood demand? Insights from the French Forest Sector Model," Post-Print halshs-00602112, HAL.
    14. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    15. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams, 2016. "The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 1-6, June.
    16. Kallio, A. Maarit I. & Solberg, Birger & Käär, Liisa & Päivinen, Risto, 2018. "Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector," Forest Policy and Economics, Elsevier, vol. 92(C), pages 193-201.
    17. Joyeeta Gupta, 2010. "A history of international climate change policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(5), pages 636-653, September.
    18. Buongiorno, Joseph, 1996. "Forest sector modeling: a synthesis of econometrics, mathematical programming, and system dynamics methods," International Journal of Forecasting, Elsevier, vol. 12(3), pages 329-343, September.
    19. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    20. Paul Rougieux & Olivier Damette, 2018. "Reassessing forest products demand functions in Europe using a panel cointegration approach," Applied Economics, Taylor & Francis Journals, vol. 50(30), pages 3247-3270, June.
    21. Bruce A. McCarl & Thomas H. Spreen, 1980. "Price Endogenous Mathematical Programming As a Tool for Sector Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 87-102.
    22. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    23. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    24. Latta, Gregory S. & Baker, Justin S. & Ohrel, Sara, 2018. "A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO2 effects of alternative macroeconomic futures," Forest Policy and Economics, Elsevier, vol. 87(C), pages 35-48.
    25. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    26. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    27. T. Takayama & G. G. Judge, 1964. "An Interregional Activity Analysis Model for the Agricultural Sector," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 46(2), pages 349-365.
    28. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    29. Mathilda Eriksson, 2015. "The Role Of The Forest In An Integrated Assessment Model Of The Climate And The Economy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(03), pages 1-29.
    30. Lobianco, Antonello & Delacote, Philippe & Caurla, Sylvain & Barkaoui, Ahmed, 2015. "The importance of introducing spatial heterogeneity in bio-economic forest models: Insights gleaned from FFSM++," Ecological Modelling, Elsevier, vol. 309, pages 82-92.
    31. Alice Favero & Robert Mendelsohn & Brent Sohngen, 2017. "Using forests for climate mitigation: sequester carbon or produce woody biomass?," Climatic Change, Springer, vol. 144(2), pages 195-206, September.
    32. Kallio, A. Maarit I. & Hänninen, Riitta & Vainikainen, Nina & Luque, Sandra, 2008. "Biodiversity value and the optimal location of forest conservation sites in Southern Finland," Ecological Economics, Elsevier, vol. 67(2), pages 232-243, September.
    33. T. Takayama & G. G. Judge, 1964. "Spatial Equilibrium and Quadratic Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 46(1), pages 67-93.
    34. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    35. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    36. Hurmekoski, Elias & Sjølie, Hanne K., 2018. "Comparing forest sector modelling and qualitative foresight analysis: Cases on wood products industry," Journal of Forest Economics, Elsevier, vol. 31(C), pages 11-16.
    37. John H. Duloy & Roger D. Norton, 1975. "Prices and Incomes in Linear Programming Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 57(4), pages 591-600.
    38. Alexandre Sauquet & Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Serge Garcia & Franck Lecocq, 2011. "Estimating Armington elasticities for sawnwood and application to the French Forest Sector Model," Post-Print halshs-00688822, HAL.
    39. Ficko, Andrej & Lidestav, Gun & Ní Dhubháin, Áine & Karppinen, Heimo & Zivojinovic, Ivana & Westin, Kerstin, 2019. "European private forest owner typologies: A review of methods and use," Forest Policy and Economics, Elsevier, vol. 99(C), pages 21-31.
    40. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    41. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    42. Wear, David W. & Coulston, John W., 2019. "Specifying Forest Sector Models for Forest Carbon Projections," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 73-97, August.
    43. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.
    44. Johnston, Craig M.T. & Parajuli, Rajan, 2017. "What's next in the U.S.-Canada softwood lumber dispute? An economic analysis of restrictive trade policy measures," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 135-146.
    45. Lobianco, Antonello & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed, 2016. "Carbon mitigation potential of the French forest sector under threat of combined physical and market impacts due to climate change," Journal of Forest Economics, Elsevier, vol. 23(C), pages 4-26.
    46. Buongiorno, Joseph & Johnston, Craig & Zhu, Shushuai, 2017. "An assessment of gains and losses from international trade in the forest sector," Forest Policy and Economics, Elsevier, vol. 80(C), pages 209-217.
    47. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    48. Lyon, Kenneth S., 1981. "Mining of the forest and the time path of the price of timber," Journal of Environmental Economics and Management, Elsevier, vol. 8(4), pages 330-344, December.
    49. Claudius Graebner, 2018. "How to Relate Models to Reality? An Epistemological Framework for the Validation and Verification of Computational Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(3), pages 1-8.
    50. Samuelson, Paul A, 1976. "Economics of Forestry in an Evolving Society," Economic Inquiry, Western Economic Association International, vol. 14(4), pages 466-492, December.
    51. Bowes, Michael D. & Krutilla, John V., 1985. "Multiple use management of public forestlands," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 2, chapter 12, pages 531-569, Elsevier.
    52. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    53. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2017. "Impact of inefficient quota allocation under the Canada-U.S. softwood lumber dispute: A calibrated mixed complementarity approach," Forest Policy and Economics, Elsevier, vol. 74(C), pages 71-80.
    54. Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Antonello Lobianco, 2013. "The French Forest Sector Model 2.0 (FFSM++)," Post-Print hal-01627988, HAL.
    55. Morgan,Mary S., 2012. "The World in the Model," Cambridge Books, Cambridge University Press, number 9781107002975.
    56. Sjølie, Hanne K. & Latta, Gregory S. & Adams, Darius M. & Solberg, Birger, 2011. "Impacts of agent information assumptions in forest sector modeling," Journal of Forest Economics, Elsevier, vol. 17(2), pages 169-184, April.
    57. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2016. "Global trade impacts of increasing Europe's bioenergy demand," Journal of Forest Economics, Elsevier, vol. 23(C), pages 27-44.
    58. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    59. Morgan,Mary S., 2012. "The World in the Model," Cambridge Books, Cambridge University Press, number 9780521176194.
    60. Guo, Jinggang & Gong, Peichen, 2017. "The potential and cost of increasing forest carbon sequestration in Sweden," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 78-86.
    61. Buongiorno, Joseph & Johnston, Craig, 2018. "Effects of parameter and data uncertainty on long-term projections in a model of the global forest sector," Forest Policy and Economics, Elsevier, vol. 93(C), pages 10-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    2. Lauri, Pekka & Forsell, Nicklas & Di Fulvio, Fulvio & Snäll, Tord & Havlik, Petr, 2021. "Material substitution between coniferous, non-coniferous and recycled biomass – Impacts on forest industry raw material use and regional competitiveness," Forest Policy and Economics, Elsevier, vol. 132(C).
    3. A. I. Pyzhev, 2022. "The Forest Industry of the Regions of Siberia and the Far East: Prospects for the Development of the Forest-Climate Sector," Studies on Russian Economic Development, Springer, vol. 33(4), pages 402-408, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    4. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    5. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    6. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    7. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.
    8. Sorda, Giovanni & Madlener, Reinhard, 2012. "Cost-Effectiveness of Lignocellulose Biorefineries and their Impact on the Deciduous Wood Markets in Germany," FCN Working Papers 8/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    10. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    11. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    12. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    13. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    14. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    15. Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
    16. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    17. Daigneault, Adam & Favero, Alice, 2021. "Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways," Land Use Policy, Elsevier, vol. 103(C).
    18. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    19. Hurmekoski, Elias & Sjølie, Hanne K., 2018. "Comparing forest sector modelling and qualitative foresight analysis: Cases on wood products industry," Journal of Forest Economics, Elsevier, vol. 31(C), pages 11-16.
    20. Guo, Jinggang & Gong, Peichen, 2017. "The potential and cost of increasing forest carbon sequestration in Sweden," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 78-86.

    More about this item

    Keywords

    Forest economics; Mathematical model; Simulation model; Prospective; Economie forestière; Modèle mathématique; Modèle de simulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03088084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.