IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02512330.html
   My bibliography  Save this paper

Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models

Author

Listed:
  • Miguel Riviere

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Sylvain Caurla

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Philippe Delacote

    (BETA - Bureau d'Économie Théorique et Appliquée - AgroParisTech - UNISTRA - Université de Strasbourg - Université de Haute-Alsace (UHA) - Université de Haute-Alsace (UHA) Mulhouse - Colmar - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CEC - Chaire Economie du Climat - Université Paris Dauphine-PSL - PSL - Université Paris sciences et lettres)

Abstract

Integrated simulation models are commonly used to provide insight on the complex functioning of social-ecological systems, often drawing on earlier tools with a narrower focus. Forest sector models (FSM) encompass a set of simulation models originally developed to forecast economic developments in timber markets but now commonly used to analyse climate and environmental policy. In this paper, we document and investigate this evolution through the prism of the inclusion of several non-timber objectives into FSM. We perform a systematic, quantitative survey of the literature followed by a more in-depth narrative review. Results show that a majority of papers in FSM research today focuses on non-timber objectives related to climate change mitigation, namely carbon sequestration and bioenergy production. Habitat conservation, deforestation and the mitigation of disturbances are secondary foci, while aspects such as forest recreation and many regulation services are absent. Non-timber objectives closest to the original targets of FSM, as well as those for which economic values are easier to estimate, have been more deeply integrated to the models, entering the objective function as decision variables. Others objectives are usually modelled as constraints and only considered through their negative economic impacts on the forest sector. Current limits to a deeper inclusion of non-timber objectives include the models' ability to represent local environmental conditions as well as the formulation of the optimisation problem as a maximisation of economic welfare. Recent research has turned towards the use of model couplings and the development of models at the local scale to overcome these limitations. Challenges for future research comprise extensions to other non-timber objectives, especially cultural services, as well as model calibration at lower spatial scales.

Suggested Citation

  • Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
  • Handle: RePEc:hal:journl:hal-02512330
    DOI: 10.1007/s10666-020-09706-w
    Note: View the original document on HAL open archive server: https://hal.univ-lorraine.fr/hal-02512330
    as

    Download full text from publisher

    File URL: https://hal.univ-lorraine.fr/hal-02512330/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10666-020-09706-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    2. Morland, Christian & Schier, Franziska & Janzen, Niels & Weimar, Holger, 2018. "Supply and demand functions for global wood markets: Specification and plausibility testing of econometric models within the global forest sector," Forest Policy and Economics, Elsevier, vol. 92(C), pages 92-105.
    3. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    4. Buchy, M. & Hoverman, S., 2000. "Understanding public participation in forest planning: a review," Forest Policy and Economics, Elsevier, vol. 1(1), pages 15-25, May.
    5. Peter, Brian & Niquidet, Kurt, 2016. "Estimates of residual fibre supply and the impacts of new bioenergy capacity from a forest sector transportation model of the Canadian Prairie Provinces," Forest Policy and Economics, Elsevier, vol. 69(C), pages 62-72.
    6. Solberg, Birger & Moiseyev, Alexander & Kallio, A. Maarit I., 2003. "Economic impacts of accelerating forest growth in Europe," Forest Policy and Economics, Elsevier, vol. 5(2), pages 157-171, July.
    7. Tardieu, Léa & Tuffery, Laëtitia, 2019. "From supply to demand factors: What are the determinants of attractiveness for outdoor recreation?," Ecological Economics, Elsevier, vol. 161(C), pages 163-175.
    8. Craig Johnston & G. Cornelis van Kooten, 2014. "Modelling Bi-lateral Forest Product Trade Flows: Experiencing Vertical and Horizontal Chain Optimization," Working Papers 2014-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    9. Maes, Joachim & Egoh, Benis & Willemen, Louise & Liquete, Camino & Vihervaara, Petteri & Schägner, Jan Philipp & Grizzetti, Bruna & Drakou, Evangelia G. & Notte, Alessandra La & Zulian, Grazia & Bour, 2012. "Mapping ecosystem services for policy support and decision making in the European Union," Ecosystem Services, Elsevier, vol. 1(1), pages 31-39.
    10. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barthès, Julien & Barkaoui, Ahmed, 2013. "Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 450-461.
    11. Põllumäe, Priit & Korjus, Henn & Paluots, Teele, 2014. "Management motives of Estonian private forest owners," Forest Policy and Economics, Elsevier, vol. 42(C), pages 8-14.
    12. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    13. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    14. Alexandre Sauquet & Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Franck Lecocq, 2011. "Paying for forest carbon or stimulating fuel wood demand? Insights from the French Forest Sector Model," Post-Print halshs-00602112, HAL.
    15. Chan, Kai M.A. & Satterfield, Terre & Goldstein, Joshua, 2012. "Rethinking ecosystem services to better address and navigate cultural values," Ecological Economics, Elsevier, vol. 74(C), pages 8-18.
    16. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    17. Kangas, Hanna-Liisa & Lintunen, Jussi & Pohjola, Johanna & Hetemäki, Lauri & Uusivuori, Jussi, 2011. "Investments into forest biorefineries under different price and policy structures," Energy Economics, Elsevier, vol. 33(6), pages 1165-1176.
    18. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    19. G. Cornelis van Kooten & Craig M.T. Johnston, 2016. "The Economics of Forest Carbon Offsets," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 227-246, October.
    20. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2018. "Can the Global Forest Sector Survive 11 °C Warming?," Agricultural and Resource Economics Review, Cambridge University Press, vol. 47(2), pages 388-413, August.
    21. Roger Sedjo & Brent Sohngen, 2012. "Carbon Sequestration in Forests and Soils," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 127-144, August.
    22. Buongiorno, Joseph, 1996. "Forest sector modeling: a synthesis of econometrics, mathematical programming, and system dynamics methods," International Journal of Forecasting, Elsevier, vol. 12(3), pages 329-343, September.
    23. N. Bockstael & J.C. Burgess & I. Strand, 1998. "The linkages between the timber trade and tropical deforestation – Indonesia," Chapters, in: The Economics of Environment and Development, chapter 20, pages 444-475, Edward Elgar Publishing.
    24. Paul Rougieux & Olivier Damette, 2018. "Reassessing forest products demand functions in Europe using a panel cointegration approach," Applied Economics, Taylor & Francis Journals, vol. 50(30), pages 3247-3270, June.
    25. Ince, Peter J. & Spelter, Henry & Skog, Kenneth E. & Kramp, Andrew & Dykstra, Dennis P., 2008. "Market impacts of hypothetical fuel treatment thinning programs on federal lands in the western United States," Forest Policy and Economics, Elsevier, vol. 10(6), pages 363-372, August.
    26. Li, Ruhong & Buongiorno, J. & Turner, J.A. & Zhu, S. & Prestemon, J., 2008. "Long-term effects of eliminating illegal logging on the world forest industries, trade, and inventory," Forest Policy and Economics, Elsevier, vol. 10(7-8), pages 480-490, October.
    27. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    28. Kallio, A. Maarit I. & Anttila, Perttu & McCormick, Megan & Asikainen, Antti, 2011. "Are the Finnish targets for the energy use of forest chips realistic--Assessment with a spatial market model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 110-126, April.
    29. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    30. Latta, Gregory S. & Baker, Justin S. & Ohrel, Sara, 2018. "A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO2 effects of alternative macroeconomic futures," Forest Policy and Economics, Elsevier, vol. 87(C), pages 35-48.
    31. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    32. Tardieu, Léa, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 98(3), December.
    33. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    34. Geijer, Erik & Bostedt, Göran & Brännlund, Runar, 2011. "Damned if you do, damned if you do not--Reduced Climate Impact vs. Sustainable Forests in Sweden," Resource and Energy Economics, Elsevier, vol. 33(1), pages 94-106, January.
    35. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
    36. Lobianco, Antonello & Delacote, Philippe & Caurla, Sylvain & Barkaoui, Ahmed, 2015. "The importance of introducing spatial heterogeneity in bio-economic forest models: Insights gleaned from FFSM++," Ecological Modelling, Elsevier, vol. 309, pages 82-92.
    37. Kallio, A. Maarit I. & Hänninen, Riitta & Vainikainen, Nina & Luque, Sandra, 2008. "Biodiversity value and the optimal location of forest conservation sites in Southern Finland," Ecological Economics, Elsevier, vol. 67(2), pages 232-243, September.
    38. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    39. Ficko, Andrej & Lidestav, Gun & Ní Dhubháin, Áine & Karppinen, Heimo & Zivojinovic, Ivana & Westin, Kerstin, 2019. "European private forest owner typologies: A review of methods and use," Forest Policy and Economics, Elsevier, vol. 99(C), pages 21-31.
    40. Sylvain Caurla & Philippe Delacote & Franck Lecocq & Ahmed Barkaoui, 2013. "Stimulating fuelwood consumption through public policies: an assessment of economic and resource impacts based on the french forest sector model," Post-Print hal-01072295, HAL.
    41. Prestemon, Jeffrey P. & Abt, Karen L. & Huggett Jr., Robert J., 2008. "Market impacts of a multiyear mechanical fuel treatment program in the U.S," Forest Policy and Economics, Elsevier, vol. 10(6), pages 386-399, August.
    42. Kumer, Peter & Štrumbelj, Erik, 2017. "Clustering-based typology and analysis of private small-scale forest owners in Slovenia," Forest Policy and Economics, Elsevier, vol. 80(C), pages 116-124.
    43. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    44. Wear, David W. & Coulston, John W., 2019. "Specifying Forest Sector Models for Forest Carbon Projections," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 73-97, August.
    45. Lobianco, Antonello & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed, 2016. "Carbon mitigation potential of the French forest sector under threat of combined physical and market impacts due to climate change," Journal of Forest Economics, Elsevier, vol. 23(C), pages 4-26.
    46. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystemservice mapping," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 98(3), pages 173-200.
    47. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    48. Pattanayak, Subhrendu K. & Abt, Robert C. & Sommer, Allan J. & Cubbage, Fred & Murray, Brian C. & Yang, Jui-Chen & Wear, David & Ahn, SoEun, 2004. "Forest forecasts: does individual heterogeneity matter for market and landscape outcomes?," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 243-260, June.
    49. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    50. Chin-Hsien Yu & Bruce A. McCarl, 2018. "The Water Implications of Greenhouse Gas Mitigation: Effects on Land Use, Land Use Change, and Forestry," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
    51. Buongiorno, Joseph & Zhu, Shushuai, 2013. "Consequences of carbon offset payments for the global forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 384-401.
    52. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    53. Caurla, Sylvain & Garcia, Serge & Niedzwiedz, Alexandra, 2015. "Store or export? An economic evaluation of financial compensation to forest sector after windstorm. The case of Hurricane Klaus," Forest Policy and Economics, Elsevier, vol. 61(C), pages 30-38.
    54. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    55. Claudio Petucco & Antonello Lobianco & Sylvain Caurla, 2020. "Economic Evaluation of an Invasive Forest Pathogen at a Large Scale : The Case of Ash Dieback in France," Post-Print hal-02625280, HAL.
    56. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 173-200, December.
    57. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    58. Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Antonello Lobianco, 2013. "The French Forest Sector Model 2.0 (FFSM++)," Post-Print hal-01627988, HAL.
    59. Alice Favero & Robert Mendelsohn, 2014. "Using Markets for Woody Biomass Energy to Sequester Carbon in Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 75-95.
    60. Sjølie, Hanne K. & Latta, Gregory S. & Adams, Darius M. & Solberg, Birger, 2011. "Impacts of agent information assumptions in forest sector modeling," Journal of Forest Economics, Elsevier, vol. 17(2), pages 169-184, April.
    61. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2016. "Global trade impacts of increasing Europe's bioenergy demand," Journal of Forest Economics, Elsevier, vol. 23(C), pages 27-44.
    62. Léa Tardieu & Laetitia Tufféry, 2019. "From supply to demand factors : what are the determinants of attractiveness for outdoor recreation?," Post-Print hal-02883545, HAL.
    63. Schwarzbauer, Peter & Rametsteiner, Ewald, 2001. "The impact of SFM-certification on forest product markets in Western Europe -- an analysis using a forest sector simulation model," Forest Policy and Economics, Elsevier, vol. 2(3-4), pages 241-256, July.
    64. Tromborg, Erik & Bolkesjo, Torjus Folsland & Solberg, Birger, 2007. "Impacts of policy means for increased use of forest-based bioenergy in Norway--A spatial partial equilibrium analysis," Energy Policy, Elsevier, vol. 35(12), pages 5980-5990, December.
    65. Stanley U. Okoro & Udo Schickhoff & Uwe A. Schneider, 2018. "Impacts of Bioenergy Policies on Land-Use Change in Nigeria," Energies, MDPI, vol. 11(1), pages 1-18, January.
    66. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    67. Buongiorno, Joseph & Johnston, Craig, 2018. "Effects of parameter and data uncertainty on long-term projections in a model of the global forest sector," Forest Policy and Economics, Elsevier, vol. 93(C), pages 10-17.
    68. Geijer, Erik & Andersson, Jon & Bostedt, Göran & Brännlund, Runar & Hjältén, Joakim, 2014. "Safeguarding species richness vs. increasing the use of renewable energy—The effect of stump harvesting on two environmental goals," Journal of Forest Economics, Elsevier, vol. 20(2), pages 111-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    2. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.
    3. Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
    4. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    5. A. I. Pyzhev, 2022. "The Forest Industry of the Regions of Siberia and the Far East: Prospects for the Development of the Forest-Climate Sector," Studies on Russian Economic Development, Springer, vol. 33(4), pages 402-408, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    2. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    4. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    5. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    6. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    7. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    8. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    9. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.
    10. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    11. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    12. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    13. Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
    14. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    15. Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
    16. Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
    17. Guo, Jinggang & Gong, Peichen, 2017. "The potential and cost of increasing forest carbon sequestration in Sweden," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 78-86.
    18. Liu, Hongxiao & Hamel, Perrine & Tardieu, Léa & Remme, Roy P. & Han, Baolong & Ren, Hai, 2022. "A geospatial model of nature-based recreation for urban planning: Case study of Paris, France," Land Use Policy, Elsevier, vol. 117(C).
    19. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barthès, Julien & Barkaoui, Ahmed, 2013. "Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 450-461.
    20. Jåstad, Eirik Ogner & Mustapha, Walid Fayez & Bolkesjø, Torjus Folsland & Trømborg, Erik & Solberg, Birger, 2018. "Modelling of uncertainty in the economic development of the Norwegian forest sector," Journal of Forest Economics, Elsevier, vol. 32(C), pages 106-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02512330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.