IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v19y2013i4p384-401.html
   My bibliography  Save this article

Consequences of carbon offset payments for the global forest sector

Author

Listed:
  • Buongiorno, Joseph
  • Zhu, Shushuai

Abstract

Long-term effects of policies to induce carbon storage in forests were projected with the Global Forest Products Model. Offset payments for carbon sequestered in forest biomass of $15–$50/t CO2e applied in all countries increased CO2 sequestration in world forests by 5–14 billion tons from 2009 to 2030. Limiting implementation to developed countries exported environmental damage from North to South, as developing countries harvested more, decreasing their stored CO2e. Substantially more CO2e was sequestered by allocating a given budget to all countries rather than to developed countries only. As offset payments increased wood prices relatively more than they decreased production, timber revenues generally increased. In the few countries with timber revenues losses they were more than compensated by the offset payments.

Suggested Citation

  • Buongiorno, Joseph & Zhu, Shushuai, 2013. "Consequences of carbon offset payments for the global forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 384-401.
  • Handle: RePEc:eee:foreco:v:19:y:2013:i:4:p:384-401
    DOI: 10.1016/j.jfe.2013.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689913000275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2013.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    2. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    3. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    4. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    5. Alexandre Sauquet & Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Franck Lecocq, 2011. "Paying for forest carbon or stimulating fuel wood demand? Insights from the French Forest Sector Model," Post-Print halshs-00602112, HAL.
    6. Jacob Phelps & Edward L. Webb & William M. Adams, 2012. "Biodiversity co-benefits of policies to reduce forest-carbon emissions," Nature Climate Change, Nature, vol. 2(7), pages 497-503, July.
    7. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    8. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latta, Gregory S. & Adams, Darius M. & Bell, Kathleen P. & Kline, Jeffrey D., 2016. "Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)," Forest Policy and Economics, Elsevier, vol. 65(C), pages 1-8.
    2. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    3. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    4. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    5. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    6. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    7. David Walker, 2014. "The Economic Potential for Forest-Based Carbon Sequestration under Different Emissions Targets and Accounting Schemes," Working Papers 2014.02, School of Economics, La Trobe University.
    8. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    9. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    10. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    11. Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
    12. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    13. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    14. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    15. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    16. Guo, Jinggang & Gong, Peichen, 2017. "The potential and cost of increasing forest carbon sequestration in Sweden," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 78-86.
    17. Munnich Vass, Miriam & Elofsson, Katarina, 2013. "Is forest sequestration at the expense of bioenergy and forest products cost-effective in EU climate policy to 2050?," Working Paper Series 2013:9, Swedish University of Agricultural Sciences, Department Economics.
    18. Claytor, Hannah S. & Clark, Christopher D. & Lambert, Dayton M. & Jensen, Kimberly L., 2018. "Cattle producer willingness to afforest pastureland and sequester carbon," Forest Policy and Economics, Elsevier, vol. 92(C), pages 43-54.
    19. Sabina Shaikh & Pavel Suchánek & Lili Sun & G. Cornelis van Kooten, 2003. "Does Inclusion of Landowners’ Non-Market Values Lower Costs of Creating Carbon Forest Sinks?," Working Papers 2003-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    20. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.

    More about this item

    Keywords

    Carbon markets; International trade; Global Forest Products Model;
    All these keywords.

    JEL classification:

    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • F18 - International Economics - - Trade - - - Trade and Environment
    • L73 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Forest Products
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • A23 - General Economics and Teaching - - Economic Education and Teaching of Economics - - - Graduate
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:19:y:2013:i:4:p:384-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.