IDEAS home Printed from https://ideas.repec.org/f/c/pal1067.html
   My authors  Follow this author

Majid Ali

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Ali, M., 2018. "Potential of the Agricultural Value Chain Improvement in Pakistan," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275951, International Association of Agricultural Economists.

    Cited by:

    1. Ali Sher & Saman Mazhar & Azhar Abbas & Muhammad Amjed Iqbal & Xiangmei Li, 2019. "Linking Entrepreneurial Skills and Opportunity Recognition with Improved Food Distribution in the Context of the CPEC: A Case of Pakistan," Sustainability, MDPI, vol. 11(7), pages 1-22, March.

Articles

  1. Khalid, Muhammad Zeeshan & Zubair, Muhammad & Ali, Majid, 2019. "An analytical method for the solution of two phase Stefan problem in cylindrical geometry," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 295-308.

    Cited by:

    1. Xu, Minghan & Akhtar, Saad & Zueter, Ahmad F. & Alzoubi, Mahmoud A. & Sushama, Laxmi & Sasmito, Agus P., 2021. "Asymptotic analysis of a two-phase Stefan problem in annulus: Application to outward solidification in phase change materials," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    2. Kudryashov, Nikolay A., 2019. "Lax pair and first integrals of the traveling wave reduction for the KdV hierarchy," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 323-330.

  2. Prakash, Jyoti & Roan, Daryn & Tauqir, Wajeha & Nazir, Hassan & Ali, Majid & Kannan, Arunachala, 2019. "Off-grid solar thermal water heating system using phase-change materials: design, integration and real environment investigation," Applied Energy, Elsevier, vol. 240(C), pages 73-83.

    Cited by:

    1. Zhou, Xin & Tian, Shuai & An, Jingjing & Yan, Da & Zhang, Lun & Yang, Junyan, 2022. "Modeling occupant behavior’s influence on the energy efficiency of solar domestic hot water systems," Applied Energy, Elsevier, vol. 309(C).
    2. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    3. Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
    4. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    5. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    6. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review on Water and Energy Integration in Process Industry: Water-Heat Nexus," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    7. Bilardo, Matteo & Fraisse, Gilles & Pailha, Mickael & Fabrizio, Enrico, 2020. "Design and experimental analysis of an Integral Collector Storage (ICS) prototype for DHW production," Applied Energy, Elsevier, vol. 259(C).

  3. Waqas, Adeel & Ji, Jie & Xu, Lijie & Ali, Majid & Zeashan, & Alvi, Jahanzeb, 2018. "Thermal and electrical management of photovoltaic panels using phase change materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 254-271.

    Cited by:

    1. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Abdo, Saber & Saidani-Scott, Hind & Benedi, Jorge & Abdelrahman, M.A., 2020. "Hydrogels beads for cooling solar panels: Experimental study," Renewable Energy, Elsevier, vol. 153(C), pages 777-786.
    3. Foteinis, Spyros & Savvakis, Nikolaos & Tsoutsos, Theocharis, 2023. "Energy and environmental performance of photovoltaic cooling using phase change materials under the Mediterranean climate," Energy, Elsevier, vol. 265(C).
    4. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    5. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2021. "Theoretical design and experimental evaluation of a PV+PCM system in the mediterranean climate," Energy, Elsevier, vol. 220(C).
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Xuan, Qingdong & Pei, Gang, 2020. "Spectrally selective approaches for passive cooling of solar cells: A review," Applied Energy, Elsevier, vol. 262(C).
    7. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    8. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    10. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    11. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    12. Arnas Majumder & Amit Kumar & Roberto Innamorati & Costantino Carlo Mastino & Giancarlo Cappellini & Roberto Baccoli & Gianluca Gatto, 2023. "Cooling Methods for Standard and Floating PV Panels," Energies, MDPI, vol. 16(24), pages 1-28, December.
    13. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    14. Grosu, Yaroslav & Zhao, Yanqi & Giacomello, Alberto & Meloni, Simone & Dauvergne, Jean-Luc & Nikulin, Artem & Palomo, Elena & Ding, Yulong & Faik, Abdessamad, 2020. "Hierarchical macro-nanoporous metals for leakage-free high-thermal conductivity shape-stabilized phase change materials," Applied Energy, Elsevier, vol. 269(C).
    15. Rezvanpour, Mohammad & Borooghani, Danial & Torabi, Farschad & Pazoki, Maryam, 2020. "Using CaCl2·6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation," Renewable Energy, Elsevier, vol. 146(C), pages 1907-1921.
    16. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    17. Novak, Milan & Vohnout, Rudolf & Landkamer, Ladislav & Budik, Ondrej & Eider, Markus & Mukherjee, Amrit, 2023. "Energy-efficient smart solar system cooling for real-time dynamic weather changes in mild-climate regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Khanna, Sourav & Singh, Preeti & Mudgal, Vijay & Newar, Sanjeev & Sharma, Vashi & Becerra, Victor & Reddy, K.S. & Mallick, Tapas K., 2022. "Novel thermal conductivity enhancing containers for performance enhancement of solar photovoltaics system integrated with phase change material," Energy, Elsevier, vol. 243(C).

  4. Hassan, Aakash & Ali, Majid & Waqas, Adeel, 2018. "Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle," Energy, Elsevier, vol. 142(C), pages 411-425.

    Cited by:

    1. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    2. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    3. Murena, Fabio & Gaggiano, Imma & Mele, Benedetto, 2022. "Fluid dynamic performances of a solar chimney plant: Analysis of experimental data and CFD modelling," Energy, Elsevier, vol. 249(C).
    4. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    5. Balijepalli, Ramakrishna & Chandramohan, V.P. & Kirankumar, K., 2020. "Development of a small scale plant for a solar chimney power plant (SCPP): A detailed fabrication procedure, experiments and performance parameters evaluation," Renewable Energy, Elsevier, vol. 148(C), pages 247-260.
    6. Suad Hassan Danook & Hussein A. Z. AL-bonsrulah & Ishak Hashim & Dhinakaran Veeman, 2021. "CFD Simulation of a 3D Solar Chimney Integrated with an Axial Turbine for Power Generation," Energies, MDPI, vol. 14(18), pages 1-22, September.
    7. Pinar Mert Cuce & Erdem Cuce & Saad Alshahrani & Shaik Saboor & Harun Sen & Ibham Veza & C. Ahamed Saleel, 2022. "Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material," Sustainability, MDPI, vol. 14(17), pages 1-14, September.
    8. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.
    9. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    10. Seungjin Lee & Yoon Seok Kim & Joong Yull Park, 2018. "Numerical Investigation on the Effects of Baffles with Various Thermal and Geometrical Conditions on Thermo-Fluid Dynamics and Kinetic Power of a Solar Updraft Tower," Energies, MDPI, vol. 11(9), pages 1-14, August.
    11. Das, Pritam & Chandramohan, V.P., 2019. "Computational study on the effect of collector cover inclination angle, absorber plate diameter and chimney height on flow and performance parameters of solar updraft tower (SUT) plant," Energy, Elsevier, vol. 172(C), pages 366-379.
    12. Nirmalendu Biswas & Dipak Kumar Mandal & Sharmistha Bose & Nirmal K. Manna & Ali Cemal Benim, 2023. "Experimental Treatment of Solar Chimney Power Plant—A Comprehensive Review," Energies, MDPI, vol. 16(17), pages 1-41, August.
    13. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).

  5. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Cited by:

    1. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    2. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    3. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    4. Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
    5. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    6. Leezna Saleem & Imran Ahmad Siddiqui & Intikhab Ulfat, 2021. "The prioritization of renewable energy technologies in Pakistan: An urgent need," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 81-103.
    7. Suman, A., 2021. "Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Jiang, Lu & Xue, Bing & Ma, Zhixiao & Yu, Lu & Huang, Beijia & Chen, Xingpeng, 2020. "A life-cycle based co-benefits analysis of biomass pellet production in China," Renewable Energy, Elsevier, vol. 154(C), pages 445-452.
    10. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    11. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    12. Muhammad U. Khan & Muhammad Ahmad & Muhammad Sultan & Ihsanullah Sohoo & Prakash C. Ghimire & Azlan Zahid & Abid Sarwar & Muhammad Farooq & Uzair Sajjad & Peyman Abdeshahian & Maryam Yousaf, 2021. "Biogas Production Potential from Livestock Manure in Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    13. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    14. Athar Mahmood & Xiukang Wang & Ahmad Naeem Shahzad & Sajid Fiaz & Habib Ali & Maria Naqve & Muhammad Mansoor Javaid & Sahar Mumtaz & Mehwish Naseer & Renji Dong, 2021. "Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    15. Asif Ali & Tahir Iqbal & Muhammad Jehanzeb Masud Cheema & Arslan Afzal & Muhammad Yasin & Zia ul Haq & Arshad Mahmood Malik & Khalid Saifullah Khan, 2021. "Development of a Low-Cost Biomass Furnace for Greenhouse Heating," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
    16. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    17. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    18. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    19. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Yongrong Xin & Muhammad Khyzer Bin Dost & Hamza Akram & Waqas Ahmad Watto, 2022. "Analyzing Pakistan’s Renewable Energy Potential: A Review of the Country’s Energy Policy, Its Challenges, and Recommendations," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    21. Zhang, Kai & Yin, Kedong & Yang, Wendong, 2022. "Predicting bioenergy power generation structure using a newly developed grey compositional data model: A case study in China," Renewable Energy, Elsevier, vol. 198(C), pages 695-711.

  6. Ali, M. & El-Hameed, M.A. & Farahat, M.A., 2017. "Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer," Renewable Energy, Elsevier, vol. 111(C), pages 455-462.

    Cited by:

    1. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    2. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    3. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    4. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    6. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    7. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    8. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    9. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    10. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    11. Tan Ding & Li Chang & Chaoshun Li & Chen Feng & Nan Zhang, 2018. "A Mixed-Strategy-Based Whale Optimization Algorithm for Parameter Identification of Hydraulic Turbine Governing Systems with a Delayed Water Hammer Effect," Energies, MDPI, vol. 11(9), pages 1-29, September.
    12. Lin Zou & Baoyi Wen & Yiying Wei & Yong Zhang & Jie Yang & Hui Zhang, 2022. "Online Prediction of Remaining Useful Life for Li-Ion Batteries Based on Discharge Voltage Data," Energies, MDPI, vol. 15(6), pages 1-16, March.
    13. Liying Wang & Luyao Zhang & Weiguo Zhao & Xiyuan Liu, 2022. "Parameter Identification of a Governing System in a Pumped Storage Unit Based on an Improved Artificial Hummingbird Algorithm," Energies, MDPI, vol. 15(19), pages 1-23, September.
    14. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    15. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    16. Zhang, Bo & Lin, Fei & Zhang, Caizhi & Liao, Ruiyue & Wang, Ya-Xiong, 2020. "Design and implementation of model predictive control for an open-cathode fuel cell thermal management system," Renewable Energy, Elsevier, vol. 154(C), pages 1014-1024.
    17. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    18. H. Eduardo Ariza & Antonio Correcher & Carlos Sánchez & Ángel Pérez-Navarro & Emilio García, 2018. "Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm," Energies, MDPI, vol. 11(8), pages 1-15, August.
    19. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    20. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    21. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    22. Abdel-Basset, Mohamed & Mohamed, Reda & El-Fergany, Attia & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Adaptive and efficient optimization model for optimal parameters of proton exchange membrane fuel cells: A comprehensive analysis," Energy, Elsevier, vol. 233(C).
    23. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.

  7. S M Ali & C A Mehmood & B Khan & M Jawad & U Farid & J K Jadoon & M Ali & N K Tareen & S Usman & M Majid & S M Anwar, 2016. "Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-20, June.

    Cited by:

    1. Hussain, I. & Ali, S.M. & Khan, B. & Ullah, Z. & Mehmood, C.A. & Jawad, M. & Farid, U. & Haider, A., 2019. "Stochastic Wind Energy Management Model within smart grid framework: A joint Bi-directional Service Level Agreement (SLA) between smart grid and Wind Energy District Prosumers," Renewable Energy, Elsevier, vol. 134(C), pages 1017-1033.

  8. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.

    Cited by:

    1. Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
    2. Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
    3. Greco, Gianluca & Canevesi, Rafael L.S. & Di Stasi, Christian & Celzard, Alain & Fierro, Vanessa & Manyà, Joan J., 2022. "Biomass-derived carbons physically activated in one or two steps for CH4/CO2 separation," Renewable Energy, Elsevier, vol. 191(C), pages 122-133.
    4. Basil Wadi & Ayub Golmakani & Tohid N.Borhani & Vasilije Manovic & Seyed Ali Nabavi, 2023. "Molecular Simulation Techniques as Applied to Silica and Carbon-Based Adsorbents for Carbon Capture," Energies, MDPI, vol. 16(13), pages 1-32, June.
    5. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    6. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Lin, Meng & Du, Yanping & Lian, Yahui, 2018. "Mathematical modeling and numerical investigation of carbon capture by adsorption: Literature review and case study," Applied Energy, Elsevier, vol. 221(C), pages 437-449.
    8. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    9. Deborah Panepinto & Marco Ravina & Mariachiara Zanetti, 2022. "An Overview of Thermal Treatment Emissions with a Particular Focus on CO 2 Parameter," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    10. Akinola, Toluleke E. & Bonilla Prado, Phebe L. & Wang, Meihong, 2022. "Experimental studies, molecular simulation and process modelling\simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review," Applied Energy, Elsevier, vol. 317(C).
    11. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    12. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    13. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    14. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    15. Papakokkinos, Giorgos & Castro, Jesús & López, Joan & Oliva, Assensi, 2019. "A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications," Applied Energy, Elsevier, vol. 235(C), pages 409-427.
    16. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    17. Yuta Sakanaka & Shotaro Hiraide & Iori Sugawara & Hajime Uematsu & Shogo Kawaguchi & Minoru T. Miyahara & Satoshi Watanabe, 2023. "Generalised analytical method unravels framework-dependent kinetics of adsorption-induced structural transition in flexible metal–organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Wilkes, Mathew Dennis & Brown, Solomon, 2022. "Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: A model-based assessment," Energy, Elsevier, vol. 250(C).
    19. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    20. A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Nabila Shehata & Abdul Hai Alami & Hussein M. Maghrabie & Mohammad Ali Abdelkareem, 2022. "Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy," Energies, MDPI, vol. 15(22), pages 1-38, November.
    21. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
    22. Liu, Yamin & Yu, Xiaojing, 2018. "Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6," Applied Energy, Elsevier, vol. 211(C), pages 1080-1088.
    23. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74," Applied Energy, Elsevier, vol. 230(C), pages 1093-1107.
    24. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    25. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    26. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation," Applied Energy, Elsevier, vol. 209(C), pages 190-202.
    27. Yuan, XiangZhou & Fan, ShuMin & Choi, Seung Wan & Kim, Hyung-Taek & Lee, Ki Bong, 2017. "Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system," Applied Energy, Elsevier, vol. 195(C), pages 850-860.
    28. Piotr Sakiewicz & Marcin Lutyński & Jakub Sobieraj & Krzysztof Piotrowski & Francesco Miccio & Sylwester Kalisz, 2022. "Adsorption of CO 2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission," Energies, MDPI, vol. 15(4), pages 1-28, February.
    29. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    30. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    31. Myers, T.G. & Font, F. & Hennessy, M.G., 2020. "Mathematical modelling of carbon capture in a packed column by adsorption," Applied Energy, Elsevier, vol. 278(C).
    32. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    33. Fernando Rubiera & Carlos Córdoba & Tamara Pena & Marta G. Plaza, 2024. "Production of Sustainable Adsorbents for CO 2 Capture Applications from Food Biowastes," Energies, MDPI, vol. 17(5), pages 1-20, March.
    34. Lu, Junhui & Cao, Haishan & Li, JunMing, 2020. "Energy and cost estimates for separating and capturing CO2 from CO2/H2O using condensation coupled with pressure/vacuum swing adsorption," Energy, Elsevier, vol. 202(C).
    35. Wahiba Yaïci & Evgueniy Entchev & Michela Longo, 2022. "Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    36. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    37. Qasem, Naef A.A. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "An efficient CO2 adsorptive storage using MOF-5 and MOF-177," Applied Energy, Elsevier, vol. 210(C), pages 317-326.
    38. de Kleijne, Kiane & James, Jebin & Hanssen, Steef V. & van Zelm, Rosalie, 2020. "Environmental benefits of urea production from basic oxygen furnace gas," Applied Energy, Elsevier, vol. 270(C).
    39. Jiang, L. & Gonzalez-Diaz, A. & Ling-Chin, J. & Roskilly, A.P. & Smallbone, A.J., 2019. "Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption," Applied Energy, Elsevier, vol. 245(C), pages 1-15.
    40. Nur Syahirah Mohamed Hatta & Mohamed Kheireddine Aroua & Farihahusnah Hussin & Lai Ti Gew, 2022. "A Systematic Review of Amino Acid-Based Adsorbents for CO 2 Capture," Energies, MDPI, vol. 15(10), pages 1-34, May.
    41. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    42. Yan, Shuren & Zhu, Ding & Zhang, Zhiyong & Li, Hai & Chen, Guangjin & Liu, Bei, 2019. "A pilot-scale experimental study on CO2 capture using Zeolitic imidazolate framework-8 slurry under normal pressure," Applied Energy, Elsevier, vol. 248(C), pages 104-114.
    43. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    44. Li, Hongwei & Tang, Zhigang & He, Zhimin & Gui, Xia & Cui, Longpeng & Mao, Xian-zhong, 2020. "Structure-activity relationship for CO2 absorbent," Energy, Elsevier, vol. 197(C).
    45. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    46. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    47. Li, Shuangjun & Deng, Shuai & Zhao, Ruikai & Zhao, Li & Xu, Weicong & Yuan, Xiangzhou & Guo, Zhihao, 2019. "Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle," Energy, Elsevier, vol. 179(C), pages 876-889.
    48. Shen, Yongting & Hocksun Kwan, Trevor & Yang, Hongxing, 2022. "Parametric and global seasonal analysis of a hybrid PV/T-CCA system for combined CO2 capture and power generation," Applied Energy, Elsevier, vol. 311(C).
    49. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    50. Cristina Moliner & Simona Focacci & Beatrice Antonucci & Aldo Moreno & Simba Biti & Fazlena Hamzah & Alfonso Martinez-Felipe & Elisabetta Arato & Claudia Fernández Martín, 2022. "Production, Activation and CO 2 Uptake Capacity of a Carbonaceous Microporous Material from Palm Oil Residues," Energies, MDPI, vol. 15(23), pages 1-12, December.
    51. Jung, Wonho & Lee, Kwang Soon, 2019. "Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process," Energy, Elsevier, vol. 180(C), pages 640-648.
    52. Ismail Ismail & Vassilis Gaganis, 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review," Clean Technol., MDPI, vol. 5(2), pages 1-29, May.
    53. Zhao, Ruikai & Liu, Longcheng & Zhao, Li & Deng, Shuai & Li, Shuangjun & Zhang, Yue, 2019. "A comprehensive performance evaluation of temperature swing adsorption for post-combustion carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    54. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    55. Agliuzza, Matteo & Mezza, Alessio & Sacco, Adriano, 2023. "Solar-driven integrated carbon capture and utilization: Coupling CO2 electroreduction toward CO with capture or photovoltaic systems," Applied Energy, Elsevier, vol. 334(C).
    56. Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
    57. Simoni, Marco & Wilkes, Mathew D. & Brown, Solomon & Provis, John L. & Kinoshita, Hajime & Hanein, Theodore, 2022. "Decarbonising the lime industry: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

  9. Eric Newby & M. Ali, 2015. "A trust-region-based derivative free algorithm for mixed integer programming," Computational Optimization and Applications, Springer, vol. 60(1), pages 199-229, January.

    Cited by:

    1. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    2. Jeffrey Larson & Sven Leyffer & Prashant Palkar & Stefan M. Wild, 2021. "A method for convex black-box integer global optimization," Journal of Global Optimization, Springer, vol. 80(2), pages 439-477, June.
    3. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    4. Burcu Beykal & Styliani Avraamidou & Ioannis P. E. Pistikopoulos & Melis Onel & Efstratios N. Pistikopoulos, 2020. "DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOnlinear Problems," Journal of Global Optimization, Springer, vol. 78(1), pages 1-36, September.

  10. Han, B. & Gfroerer, J. & Kuramoto, S.J. & Ali, M. & Woodward, A.M. & Teich, J., 2015. "Medicaid expansion under the affordable care act: Potential changes in receipt of mental health treatment among low-income nonelderly adults with serious mental illness," American Journal of Public Health, American Public Health Association, vol. 105(10), pages 1982-1989.

    Cited by:

    1. Ramin Mojtabai & Christine Mauro & Melanie M Wall & Colleen L Barry & Mark Olfson, 2020. "Private health insurance coverage of drug use disorder treatment: 2005–2018," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-11, October.
    2. Phillippi, Stephen & Beiter, Kaylin & Thomas, Casey & Vos, Saskia, 2020. "Identifying gaps and using evidence-based practices to serve the behavioral health treatment needs of medicaid-insured children," Children and Youth Services Review, Elsevier, vol. 115(C).

  11. Zhou Wei & M. Ali, 2015. "Convex mixed integer nonlinear programming problems and an outer approximation algorithm," Journal of Global Optimization, Springer, vol. 63(2), pages 213-227, October.

    Cited by:

    1. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    2. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.

  12. Bromaghin, A. & Ali, M. & Ravens, T. & Petersen, T. & Hoffman, J., 2014. "Experimental study of abrasion characteristics for critical sliding components for use in hydrokinetic devices," Renewable Energy, Elsevier, vol. 66(C), pages 205-214.

    Cited by:

    1. Emanuele Quaranta & Manuel Bonjean & Damiano Cuvato & Christophe Nicolet & Matthieu Dreyer & Anthony Gaspoz & Samuel Rey-Mermet & Bruno Boulicaut & Luigi Pratalata & Marco Pinelli & Giuseppe Tomaselli, 2020. "Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems," Sustainability, MDPI, vol. 12(21), pages 1-78, October.
    2. Kumar, Dinesh & Sarkar, Shibayan, 2016. "A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 796-813.
    3. Ali, M. & Ravens, T. & Petersen, T. & Bromaghin, A. & Jenson, S., 2015. "Impact of sediments on wear performance of critical sliding components of hydrokinetic devices," Renewable Energy, Elsevier, vol. 80(C), pages 498-507.

  13. E. Gumma & M. Hashim & M. Ali, 2014. "A derivative-free algorithm for linearly constrained optimization problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 599-621, April.

    Cited by:

    1. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    2. Adriano Verdério & Elizabeth W. Karas & Lucas G. Pedroso & Katya Scheinberg, 2017. "On the construction of quadratic models for derivative-free trust-region algorithms," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 501-527, December.
    3. Charles Audet & Andrew R. Conn & Sébastien Le Digabel & Mathilde Peyrega, 2018. "A progressive barrier derivative-free trust-region algorithm for constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 307-329, November.

  14. Rashidi, M.M. & Ali, M. & Freidoonimehr, N. & Nazari, F., 2013. "Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm," Energy, Elsevier, vol. 55(C), pages 497-510.

    Cited by:

    1. Torabi, Mohsen & Karimi, Nader & Zhang, Kaili, 2015. "Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources," Energy, Elsevier, vol. 93(P1), pages 106-127.
    2. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    3. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    4. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    5. Rashidi, M.M. & Aghagoli, A. & Raoofi, R., 2017. "Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network," Energy, Elsevier, vol. 129(C), pages 201-215.
    6. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    7. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
    8. Taghavifar, Hadi & Khalilarya, Shahram & Jafarmadar, Samad, 2014. "Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm," Energy, Elsevier, vol. 71(C), pages 656-664.
    9. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    10. Shehata, Ahmed S. & Saqr, Khalid M. & Xiao, Qing & Shehadeh, Mohamed F. & Day, Alexander, 2016. "Performance analysis of wells turbine blades using the entropy generation minimization method," Renewable Energy, Elsevier, vol. 86(C), pages 1123-1133.
    11. Doh, Deog-Hee & Muthtamilselvan, M. & Swathene, B. & Ramya, E., 2020. "Homogeneous and heterogeneous reactions in a nanofluid flow due to a rotating disk of variable thickness using HAM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 90-110.
    12. Dalir, Nemat & Dehsara, Mohammad & Nourazar, S. Salman, 2015. "Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet," Energy, Elsevier, vol. 79(C), pages 351-362.

  15. M. Ali & W. Zhu, 2013. "A penalty function-based differential evolution algorithm for constrained global optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 707-739, April.

    Cited by:

    1. M. Fernanda P. Costa & Rogério B. Francisco & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2017. "Theoretical and Practical Convergence of a Self-Adaptive Penalty Algorithm for Constrained Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 875-893, September.
    2. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.
    3. Geng Lin & Wenxing Zhu & M. Montaz Ali, 2016. "An effective discrete dynamic convexized method for solving the winner determination problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 563-593, August.
    4. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    5. Yulong Xu & Jian-an Fang & Wu Zhu & Xiaopeng Wang & Lingdong Zhao, 2015. "Differential evolution using a superior–inferior crossover scheme," Computational Optimization and Applications, Springer, vol. 61(1), pages 243-274, May.
    6. Hao Liu & Yue Wang & Liangping Tu & Guiyan Ding & Yuhan Hu, 2019. "A modified particle swarm optimization for large-scale numerical optimizations and engineering design problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2407-2433, August.
    7. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    8. Liu, Jianjun & Wu, Changzhi & Wu, Guoning & Wang, Xiangyu, 2015. "A novel differential search algorithm and applications for structure design," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 246-269.

  16. Lohan, Shiv Kumar & Ram, T. & Mukesh, S. & Ali, M. & Arya, S., 2013. "Sustainability of biodiesel production as vehicular fuel in Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 251-259.

    Cited by:

    1. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    2. Dhande, D.Y. & Nighot, D.V. & Sinaga, Nazaruddin & Dahe, Kiran B., 2021. "Extraction of bioethanol from waste pomegranate fruits as a potential feedstock and its blending effects on a performance of a single cylinder SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    4. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    5. Patel, Rupesh L. & Sankhavara, C.D., 2017. "Biodiesel production from Karanja oil and its use in diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 464-474.
    6. Tirkey, Jeewan Vachan & Kumar, Ajeet & Singh, Deepak Kumar, 2022. "Energy consumption, greenhouse gas emissions and economic feasibility studies of biodiesel production from Mahua (Madhuca longifolia) in India," Energy, Elsevier, vol. 249(C).
    7. Edrisi, Sheikh Adil & Abhilash, P.C., 2016. "Exploring marginal and degraded lands for biomass and bioenergy production: An Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1537-1551.
    8. Dwivedi, Gaurav & Sharma, M.P., 2014. "Prospects of biodiesel from Pongamia in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 114-122.

  17. I.-I. Lin & Gustavo Goni & John Knaff & Cristina Forbes & M. Ali, 2013. "Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1481-1500, April.

    Cited by:

    1. Edwin A. Hernández-Delgado & Pedro Alejandro-Camis & Gerardo Cabrera-Beauchamp & Jaime S. Fonseca-Miranda & Nicolás X. Gómez-Andújar & Pedro Gómez & Roger Guzmán-Rodríguez & Iván Olivo-Maldonado & Sam, 2024. "Stronger Hurricanes and Climate Change in the Caribbean Sea: Threats to the Sustainability of Endangered Coral Species," Sustainability, MDPI, vol. 16(4), pages 1-62, February.
    2. Atul Kumar Varma & Neeru Jaiswal & Ayan Das & Mukesh Kumar & Nikhil V. Lele & Rojalin Tripathy & Saroj Maity & Mehul Pandya & Bimal Bhattacharya & Anup Kumar Mandal & M. Jishad & M. Seemanth & Arvind , 2023. "A pathway for multi-stage cyclone-induced hazard tracking—case study for Yaas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1035-1067, May.
    3. Joanna Burston & Daniel Ware & Rodger Tomlinson, 2015. "The real-time needs of emergency managers for tropical cyclone storm tide forecasting: results of a participatory stakeholder engagement process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1653-1668, September.
    4. Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    5. Sooncheol Hwang & Sangyoung Son & Chilwoo Lee & Hyun-Doug Yoon, 2020. "Quantitative assessment of inundation risks from physical contributors associated with future storm surges: a case study of Typhoon Maemi (2003)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1389-1411, November.
    6. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    7. Kumar Ravi Prakash & Tanuja Nigam & Vimlesh Pant & Navin Chandra, 2021. "On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1981-2001, April.
    8. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.

  18. R. Ellahi & Arshad Riaz & S. Nadeem & M. Ali, 2012. "Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-24, August.

    Cited by:

    1. Humaira Yasmin & Naveed Iqbal & Anum Tanveer, 2020. "Engineering Applications of Peristaltic Fluid Flow with Hall Current, Thermal Deposition and Convective Conditions," Mathematics, MDPI, vol. 8(10), pages 1-21, October.

  19. Geng Lin & Wenxing Zhu & M. Ali, 2011. "An exact algorithm for the 0–1 linear knapsack problem with a single continuous variable," Journal of Global Optimization, Springer, vol. 50(4), pages 657-673, August.

    Cited by:

    1. Dilek Günneç & S. Raghavan & Rui Zhanga, 2020. "Least-Cost Influence Maximization on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 289-302, April.
    2. Wang, Yu & Chen, Feng & Chen, Zhi-Long, 2018. "Pickup and delivery of automobiles from warehouses to dealers," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 412-430.

  20. Saralees Nadarajah & M. Ali, 2008. "Pareto Random Variables for Hydrological Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1381-1393, October.

    Cited by:

    1. Sang Ug Kim & Cheol-Eung Lee, 2021. "Incorporation of Cost-Benefit Analysis Considering Epistemic Uncertainty for Calculating the Optimal Design Flood," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 757-774, January.
    2. Wangxue Chen & Rui Yang & Dongsen Yao & Chunxian Long, 2021. "Pareto parameters estimation using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 62(3), pages 1195-1211, June.
    3. Ribeiro, H.V. & Mendes, R.S. & Lenzi, E.K. & Belancon, M.P. & Malacarne, L.C., 2011. "On the dynamics of bubbles in boiling water," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 178-183.
    4. Wenshu Qian & Wangxue Chen & Xiaofang He, 2021. "Parameter estimation for the Pareto distribution based on ranked set sampling," Statistical Papers, Springer, vol. 62(1), pages 395-417, February.
    5. Ferreira, Helena & Ferreira, Marta, 2015. "Extremes of scale mixtures of multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 82-99.
    6. Ali İ. Genç, 2021. "Products, Sums and Quotients of Upper Truncated Pareto Random Variables with an Application in Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 369-383, January.
    7. Walid Abu-Dayyeh & Aissa Assrhani & Kamarulzaman Ibrahim, 2013. "Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling," Statistical Papers, Springer, vol. 54(1), pages 207-225, February.

  21. Litak, G. & Borowiec, M. & Ali, M. & Saha, L.M. & Friswell, M.I., 2007. "Pulsive feedback control of a quarter car model forced by a road profile," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1672-1676.

    Cited by:

    1. Litak, Grzegorz & Borowiec, Marek & Friswell, Michael I. & Przystupa, Wojciech, 2009. "Chaotic response of a quarter car model forced by a road profile with a stochastic component," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2448-2456.

  22. M. Mandal & U. Mohanty & P. Sinha & M. Ali, 2007. "Impact of sea surface temperature in modulating movement and intensity of tropical cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 413-427, June.

    Cited by:

    1. Chaoyong Tu & Shumin Chen & Zhongkuo Zhao & Weibiao Li & Changjian Ni, 2022. "Damage assessment for tropical cyclones landing in Guangdong Province of China by using a projection pursuit dynamic cluster model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 475-493, October.
    2. Sujata Pattanayak & U. Mohanty & S. Gopalakrishnan, 2012. "Simulation of very severe cyclone Mala over Bay of Bengal with HWRF modeling system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1413-1437, September.

  23. M. Ali & M. A. Chaudhry, 1990. "Inter‐Regional Farm Efficiency In Pakistan'S Punjab: A Frontier Production Function Study," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(1), pages 62-74, January.

    Cited by:

    1. Coelli, T. J., 1995. "Recent Developments in Frontier Modelling and Efficiency Measurement," 1995 Conference (39th), February 14-16, 1995, Perth, Australia 148798, Australian Agricultural and Resource Economics Society.
    2. Daniel Kipruto Tuitoek & Clement Cheruiyot Tison & Lydia Jebichii, 2020. "Analysis of Technical Efficiency of Small Scale Tea Production in Nandi Hills – Nandi County: A Data Envelopment Analysis Approach," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 4(6), pages 149-163, June.
    3. Nkamleu, Guy Blaise, 2004. "L’echec de la croissance de la productivite agricole en afrique francophone [Failure of agricultural productivity growth in African French speaking countries]," MPRA Paper 15104, University Library of Munich, Germany.
    4. B.C. Okoye & A. Abass & B. Bachwenkizi & G. Asumugha & B. Alenkhe & R. Ranaivoson & R. Randrianarivelo & N. Rabemanantsoa & I. Ralimanana, 2016. "Differentials in technical efficiency among smallholder cassava farmers in Central Madagascar: A Cobb Douglas stochastic frontier production approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1143345-114, December.
    5. Priya Brata Bhoi & Veeresh S. Wali & Deepak Kumar Swain & Kalpana Sharma & Akash Kumar Bhoi & Manlio Bacco & Paolo Barsocchi, 2021. "Input Use Efficiency Management for Paddy Production Systems in India: A Machine Learning Approach," Agriculture, MDPI, vol. 11(9), pages 1-27, August.
    6. Alene, Arega D. & Hassan, Rashid M., 2003. "Measuring The Impact Of Ethiopia'S New Extension Program On The Productive Efficiency Of Farmers," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25919, International Association of Agricultural Economists.
    7. Srinivasulu Rajendran, 2014. "Technical Efficiency of Fruit and Vegetable Producers in Tamil Nadu, India: A Stochastic Frontier Approach," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 11(1), pages 77-93, June.
    8. Munir Ahmad & Sarfraz Khan Qureshi, 1999. "Recent Evidence on Farm Size and Land Productivity: Implications for Public Policy," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 38(4), pages 1135-1153.
    9. Bedassa Tadesse & S. Krishnamoorthy, 1997. "Technical efficiency in paddy farms of Tamil Nadu: an analysis based on farm size and ecological zone," Agricultural Economics, International Association of Agricultural Economists, vol. 16(3), pages 185-192, August.
    10. Tumelo Francinah Ramukhithi & Khathutshelo Agree Nephawe & Takalani Judas Mpofu & Thomas Raphulu & Karen Munhuweyi & Fhulufhelo Vincent Ramukhithi & Bohani Mtileni, 2023. "An Assessment of Economic Sustainability and Efficiency in Small-Scale Broiler Farms in Limpopo Province: A Review," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    11. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.
    12. Abedullah & Khuda Bakhsh & Bashir Ahmad, 2006. "Technical Efficiency and its Determinants in Potato Production, Evidence from Punjab, Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 11(2), pages 1-22, Jul-Dec.
    13. Thiam, Abdourahmane & Bravo-Ureta, Boris E. & Rivas, Teodoro E., 2001. "Technical efficiency in developing country agriculture: a meta-analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 235-243, September.
    14. Bakh, M. Elahi & Islam, M. Serajul, 2005. "Technical And Allocative Efficiency Of Growing Wheat In Northwest Districts Of Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 28(1-2), pages 1-11, December.
    15. Karunarathna, Muditha & Wilson, Clevo, 2017. "Agricultural biodiversity and farm level technical efficiency: An empirical investigation," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 38-46.
    16. Alene, Arega D. & Zeller, Manfred, 2005. "Technology adoption and farmer efficiency in multiple crops production in eastern Ethiopia: A comparison of parametric and non-parametric distance functions," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 6(1).
    17. Madeeha G. Qureshi & Sarfraz Khan Qureshi, 2004. "Impact of Changing Profile of Rural Land Market in Pakistan on Resource Allocation and Equity," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 43(4), pages 471-492.
    18. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    19. Nwaru,Jude C. & Ndukwu,Patrick C., 2012. "Estimation of Farm Level Technical Efficiency and Its Determinants Among Male And Female Sweet Potato Farmers In Imo State, Nigeria," Ethiopian Journal of Economics, Ethiopian Economics Association, vol. 20(1), September.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.