IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920306917.html
   My bibliography  Save this article

Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks

Author

Listed:
  • Cheng, Jun
  • Wang, Yali
  • Liu, Niu
  • Hou, Wen
  • Zhou, Junhu

Abstract

In order to efficiently separate CO2, Zn/Co zeolitic imidazolate framework (Zn/Co-ZIF) nanoparticles were carbonized and then loaded in situ into PEBAX polymer to enhance CO2 permeability and selectivity of mixed matrix membranes (MMMs), simultaneously. Positron annihilation lifetime spectroscopy (PALS), gas adsorption apparatus, and FTIR were used to characterize Zn/Co-ZIF carbonized at 600 °C for various hours and MMMs. It was found that carbonized Zn/Co-ZIF obtained local defective structures with abundant carbon and nitrogen active sites, CO2 adsorption capacity of Zn/Co-ZIF carbonized at 600 °C for 24 h increased by 1.87 times to 2.64 mmol/g. With the increasing of carbonization time, CO2 permeability of MMMs firstly decreased and then increased, while selectivity showed the opposite tendency. CO2 permeability of PEBAX-8H membrane loaded with Zn/Co-ZIF carbonized at 600 °C for 8 h increased by 15% to 102.5 ± 3.0 barrers, and selectivity of CO2/N2, CO2/CH4 and CO2/H2 increased by 45%, 43% and 18% to 52.1, 16.4 and 9.4, respectively.

Suggested Citation

  • Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306917
    DOI: 10.1016/j.apenergy.2020.115179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    2. Franz, Johannes & Maas, Pascal & Scherer, Viktor, 2014. "Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes," Applied Energy, Elsevier, vol. 130(C), pages 532-542.
    3. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    4. Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2014. "Energy consumption analysis for CO2 separation from gas mixtures," Applied Energy, Elsevier, vol. 130(C), pages 237-243.
    5. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.
    6. Lee, Sunghoon & Kim, Jin-Kuk, 2020. "Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants," Applied Energy, Elsevier, vol. 260(C).
    7. Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Ruizhi & Han, Yang & Chen, Kai K. & Yang, Yutong & Ho, W.S. Winston, 2022. "Matrimid substrates with bicontinuous surface and macrovoids in the bulk: A nearly ideal substrate for composite membranes in CO2 capture," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuangjun & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Yuan, Xiangzhou, 2021. "Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle," Energy, Elsevier, vol. 215(PB).
    2. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    3. Ibrahim, Muna Hassan & Hayyan, Maan & Hashim, Mohd Ali & Hayyan, Adeeb, 2017. "The role of ionic liquids in desulfurization of fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1534-1549.
    4. Chen, S.J. & Zhu, M. & Fu, Y. & Huang, Y.X. & Tao, Z.C. & Li, W.L., 2017. "Using 13X, LiX, and LiPdAgX zeolites for CO2 capture from post-combustion flue gas," Applied Energy, Elsevier, vol. 191(C), pages 87-98.
    5. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    6. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    7. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    8. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
    9. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    10. Zhao, Ruikai & Deng, Shuai & Liu, Yinan & Zhao, Qing & He, Junnan & Zhao, Li, 2017. "Carbon pump: Fundamental theory and applications," Energy, Elsevier, vol. 119(C), pages 1131-1143.
    11. Xie, Yujiao & Ma, Chunyan & Lu, Xiaohua & Ji, Xiaoyan, 2016. "Evaluation of imidazolium-based ionic liquids for biogas upgrading," Applied Energy, Elsevier, vol. 175(C), pages 69-81.
    12. Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
    13. Jung, Wonho & Lee, Kwang Soon, 2019. "Novel short-cut estimation method for the optimum total energy demand of solid sorbents in an adsorption-based CO2 capture process," Energy, Elsevier, vol. 180(C), pages 640-648.
    14. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    15. Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2018. "Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 436-455.
    16. Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2018. "Thermodynamic analysis of CO2 separation from biogas with conventional ionic liquids," Applied Energy, Elsevier, vol. 217(C), pages 75-87.
    17. Wang, Mei & Yao, Liwen & Wang, Jitong & Zhang, Zixiao & Qiao, Wenming & Long, Donghui & Ling, Licheng, 2016. "Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 168(C), pages 282-290.
    18. Xiao, Min & Liu, Helei & Gao, Hongxia & Olson, Wilfred & Liang, Zhiwu, 2019. "CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine," Applied Energy, Elsevier, vol. 235(C), pages 311-319.
    19. Zenon Ziobrowski & Adam Rotkegel, 2021. "Feasibility study of CO2/N2 separation intensification on supported ionic liquid membranes by commonly used impregnation methods," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(2), pages 297-312, April.
    20. Zhang, Yingying & Ji, Xiaoyan & Xie, Yujiao & Lu, Xiaohua, 2016. "Screening of conventional ionic liquids for carbon dioxide capture and separation," Applied Energy, Elsevier, vol. 162(C), pages 1160-1170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920306917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.