IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp437-447.html
   My bibliography  Save this article

Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading

Author

Listed:
  • Ma, Chunyan
  • Liu, Chang
  • Lu, Xiaohua
  • Ji, Xiaoyan

Abstract

Biogas has been considered as an alternative renewable energy, and CO2 removal from raw biogas (i.e. biogas upgrading) is needed for producing biomethane to be used as vehicle fuels or injected into the natural gas grid. Biogas upgrading with physical absorbents, such as water and other commercial organic solvents, is simple, efficient and with low energy requirements for regeneration. Recently, deep eutectic solvents (DESs) with nonvolatility, nonflammability and low price have been reported as promising alternatives to replace conventional physical absorbents in many research areas including biogas upgrading. However, the performances of these physical solvents including conventional physical absorbents and DES-based solvents have not been evaluated and compared with each other. In this work, the properties of 4 physical solvents (i.e. water, dimethyl ether of polyethylene glycol (DEPG), propylene carbonate (PC), and aqueous DES (AQDES)) were compared. Furthermore, a conceptual process was developed to upgrade biogas with these solvents and simulated based on Aspen Plus in order to conduct performance comparison. The simulation results of energy utilization, the amount of recirculated solvents and the diameters of absorber and desorber were analyzed and compared based on equilibrium and rate-based approaches, respectively. The simulation results based on the rate-based approach were further used to estimate the costs of biogas upgrading process with a same raw biogas capacity for comparison. Meanwhile, the specific cost of biogas upgrading process with a same size of equipment was also evaluated. The results show that the CO2 solubility, selectivity and viscosity are three more important properties, providing valuable information for developing novel physical solvents for CO2 separation. The simulation results show that the equilibrium and rate-based approaches result in different conclusions, especially when the solvent viscosity is relatively high, and the rate-based approach is preferable. Based on the simulation results from the rate-based approach, the performances of AQDES and PC are similar with a same amount of energy utilization, that is around 11% lower than water, and DEPG is inferior to water. For the case with the same gas capacity, the total annual costs of biogas upgrading process with these solvents show the following order: DEPG > AQ60wt.%DES > water > AQ50wt.%DES ≈ PC. For the case with the same size of equipment, compared to water, the total specific costs of biogas upgrading process with PC and AQ50wt.%DES decrease by about 30% and 45%, respectively, and the treated biogas capacities increase to 1.5 and 2 times, respectively. In general, both PC and AQ50wt.%DES show better performance than the other solvents. Considering that DES is an environmentally benign solvent, and the performance of DES can be greatly improved by further designing, it is more promising.

Suggested Citation

  • Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:437-447
    DOI: 10.1016/j.apenergy.2018.04.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918306809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.04.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Gang & Wang, Wen & Angelidaki, Irini, 2014. "A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent," Applied Energy, Elsevier, vol. 132(C), pages 536-542.
    2. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    3. Bacsik, Zoltán & Cheung, Ocean & Vasiliev, Petr & Hedin, Niklas, 2016. "Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56," Applied Energy, Elsevier, vol. 162(C), pages 613-621.
    4. Xie, Yujiao & Ma, Chunyan & Lu, Xiaohua & Ji, Xiaoyan, 2016. "Evaluation of imidazolium-based ionic liquids for biogas upgrading," Applied Energy, Elsevier, vol. 175(C), pages 69-81.
    5. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    6. Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
    7. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    8. Lynnette A. Blanchard & Dan Hancu & Eric J. Beckman & Joan F. Brennecke, 1999. "Green processing using ionic liquids and CO2," Nature, Nature, vol. 399(6731), pages 28-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
    2. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    3. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    4. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    6. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    8. Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
    9. Ma, Chunyan & Wang, Nan & Ye, Nannan & Ji, Xiaoyan, 2021. "CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation," Applied Energy, Elsevier, vol. 304(C).
    10. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    11. Tooba Qureshi & Majeda Khraisheh & Fares Almomani, 2023. "Cost and Heat Integration Analysis for CO 2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    2. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    3. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    5. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    7. Pengfei Guo & Yuejin Zhang & Yongjun Zhao, 2018. "Biocapture of CO 2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods," IJERPH, MDPI, vol. 15(3), pages 1-18, March.
    8. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Cheng, Jun & Wang, Yali & Liu, Niu & Hou, Wen & Zhou, Junhu, 2020. "Enhanced CO2 selectivity of mixed matrix membranes with carbonized Zn/Co zeolitic imidazolate frameworks," Applied Energy, Elsevier, vol. 272(C).
    10. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    11. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    12. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    13. Baccioli, A. & Antonelli, M. & Frigo, S. & Desideri, U. & Pasini, G., 2018. "Small scale bio-LNG plant: Comparison of different biogas upgrading techniques," Applied Energy, Elsevier, vol. 217(C), pages 328-335.
    14. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    16. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    17. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    18. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    19. Tooba Qureshi & Majeda Khraisheh & Fares Almomani, 2023. "Cost and Heat Integration Analysis for CO 2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    20. Cavaignac, Renata S. & Ferreira, Newton L. & Guardani, Roberto, 2021. "Techno-economic and environmental process evaluation of biogas upgrading via amine scrubbing," Renewable Energy, Elsevier, vol. 171(C), pages 868-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:437-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.