IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v104y2016icp76-84.html
   My bibliography  Save this article

Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture

Author

Listed:
  • Wang, Fei
  • Fu, Shanfei
  • Guo, Gang
  • Jia, Zhen-Zhen
  • Luo, Sheng-Jun
  • Guo, Rong-Bo

Abstract

In this work, hydrate-based CO2 removal from a CH4/CO2 mixture was studied. CH4/CO2 led to faster hydrate formation than pure CH4, because the existence of CO2 resulted in easier hydrate nucleation. Kinetic separation of CO2 was observed in the CH4/CO2 hydrate formation with different initial CO2 proportions (1.83–27.76%) due to the higher CO2 affinity of formation of hydrates. However, the initial CO2 proportion of CH4/CO2 showed no obvious effects on the hydration ratio of CH4 and CO2 and the separation efficiency when the gas was superfluous in hydrate formation. In addition, hydrate-based multistage separation of CH4/CO2 was established and conducted at different initial pressures (4, 5 and 6 MPa). The CH4 proportions were increased from 72.24% to 97.30%, 97.22% and 97.14% after separation by four, five and seven stages at initial pressures of 4, 5, and 6 MPa, respectively.

Suggested Citation

  • Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
  • Handle: RePEc:eee:energy:v:104:y:2016:i:c:p:76-84
    DOI: 10.1016/j.energy.2016.03.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216303541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kondo, Wataru & Ohtsuka, Kaoru & Ohmura, Ryo & Takeya, Satoshi & Mori, Yasuhiko H., 2014. "Clathrate-hydrate formation from a hydrocarbon gas mixture: Compositional evolution of formed hydrate during an isobaric semi-batch hydrate-forming operation," Applied Energy, Elsevier, vol. 113(C), pages 864-871.
    2. Luo, Gang & Wang, Wen & Angelidaki, Irini, 2014. "A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent," Applied Energy, Elsevier, vol. 132(C), pages 536-542.
    3. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    4. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    5. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    6. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    7. Zhong, Dong-Liang & Ding, Kun & Lu, Yi-Yu & Yan, Jin & Zhao, Wei-Long, 2016. "Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions," Applied Energy, Elsevier, vol. 162(C), pages 1619-1626.
    8. Xu, Chun-Gang & Zhang, Shao-Hong & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2013. "CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis," Energy, Elsevier, vol. 59(C), pages 719-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Li, Zheng & Zhong, Dong-Liang & Lu, Yi-Yu & Yan, Jin & Zou, Zhen-Lin, 2017. "Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas," Applied Energy, Elsevier, vol. 199(C), pages 370-381.
    3. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    4. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    5. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Formation kinetics and microscopic characteristics of synthesized ternary gas mixture hydrates in TBAB aqueous solutions," Energy, Elsevier, vol. 245(C).
    6. Zang, Xiaoya & Wan, Lihua & He, Yong & Liang, Deqing, 2020. "CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate(SDS) as additive," Energy, Elsevier, vol. 190(C).
    7. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    8. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    9. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    10. Zhang, Lu & Li, Yuan & Zhou, Hongcang, 2018. "Preparation and characterization of DBU-loaded MCM-41 for adsorption of CO2," Energy, Elsevier, vol. 149(C), pages 414-423.
    11. Wang, Yiwei & Du, Mei & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Chen, Bo & Chen, Guangjin & Sun, Changyu & Yang, Lanying, 2017. "Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation," Energy, Elsevier, vol. 129(C), pages 28-41.
    12. Huang, Hong & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang, 2023. "Energy and exergy efficiency analysis for biogas De-CO2 with tetra-n-butylammonium bromide hydrates," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jun & Ding, Jia-Xiang & Liang, De-Qing, 2018. "Experimental study on hydrate-based gas separation of mixed CH4/CO2 using unstable ice in a silica gel bed," Energy, Elsevier, vol. 157(C), pages 54-64.
    2. Cai, Jing & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2017. "Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment," Applied Energy, Elsevier, vol. 204(C), pages 1526-1534.
    3. Yusuf, Noor & Almomani, Fares, 2023. "Recent advances in biogas purifying technologies: Process design and economic considerations," Energy, Elsevier, vol. 265(C).
    4. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    5. Yi, Jie & Zhong, Dong-Liang & Yan, Jin & Lu, Yi-Yu, 2019. "Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture," Energy, Elsevier, vol. 171(C), pages 61-68.
    6. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    7. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    8. Song, Hongqing & Zhang, Jie & Ni, Dongdong & Sun, Yueqiang & Zheng, Yongchun & Kou, Jue & Zhang, Xianguo & Li, Zhengyi, 2021. "Investigation on in-situ water ice recovery considering energy efficiency at the lunar south pole," Applied Energy, Elsevier, vol. 298(C).
    9. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    10. Zhong, Dong-Liang & Wang, Wen-Chun & Zou, Zhen-Lin & Lu, Yi-Yu & Yan, Jin & Ding, Kun, 2018. "Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation," Applied Energy, Elsevier, vol. 227(C), pages 686-693.
    11. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    12. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    13. Ghafoori, Mohammad Samim & Loubar, Khaled & Marin-Gallego, Mylène & Tazerout, Mohand, 2022. "Techno-economic and sensitivity analysis of biomethane production via landfill biogas upgrading and power-to-gas technology," Energy, Elsevier, vol. 239(PB).
    14. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    15. Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
    16. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    17. Von Wald, Gregory A. & Stanion, Austin J. & Rajagopal, Deepak & Brandt, Adam R., 2019. "Biomethane addition to California transmission pipelines: Regional simulation of the impact of regulations," Applied Energy, Elsevier, vol. 250(C), pages 292-301.
    18. Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
    19. Baccioli, A. & Antonelli, M. & Frigo, S. & Desideri, U. & Pasini, G., 2018. "Small scale bio-LNG plant: Comparison of different biogas upgrading techniques," Applied Energy, Elsevier, vol. 217(C), pages 328-335.
    20. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:104:y:2016:i:c:p:76-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.