IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i3p939-d313567.html
   My bibliography  Save this article

The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea

Author

Listed:
  • Ya-Ting Chang

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • I-I Lin

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Hsiao-Ching Huang

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Yi-Chun Liao

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Chun-Chi Lien

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

Abstract

Tropical cyclone (TC) translation speed is an important parameter. In the context of TC–ocean interaction, faster translation speed can contribute to less TC-induced ocean cooling and thus enables more air–sea enthalpy flux supply to favor TC intensification. In 2018, Kossin published an interesting paper in Nature , reporting a global slow-down of TC translation speed since the 1950s. However, upon close inspection, in the last two decades, TC translation speed actually increased over the western North Pacific (WNP) and neighboring seas. Thus, we are interested to see which sub-region in the WNP and neighboring seas had the largest increase during the last two decades, and whether such increases contribute to TC intensification. Our results found statistically significant translation speed increases (~0.8 ms −1 per decade) over the South China Sea. Ruling out other possible factors that may influence TC intensity (i.e., changes in atmospheric vertical wind shear, pre-TC sea surface temperature or subsurface thermal condition), we suggest, in this research, the possible contribution of TC translation speed increases to the observed TC intensity increases over the South China Sea in the last two decades (1998–2017).

Suggested Citation

  • Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:939-:d:313567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/3/939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/3/939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I.-I. Lin & Gustavo Goni & John Knaff & Cristina Forbes & M. Ali, 2013. "Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1481-1500, April.
    2. I-I Lin & Johnny C.L. Chan, 2015. "Recent decrease in typhoon destructive potential and global warming implications," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Kerry A. Emanuel, 1999. "Thermodynamic control of hurricane intensity," Nature, Nature, vol. 401(6754), pages 665-669, October.
    4. Iam-Fei Pun & Johnny C. L. Chan & I.-I. Lin & Kelvin T. F. Chan & James F. Price & Dong Shan Ko & Chun-Chi Lien & Yu-Lun Wu & Hsiao-Ching Huang, 2019. "Rapid Intensification of Typhoon Hato (2017) over Shallow Water," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    5. Ping Huang & I. -I Lin & Chia Chou & Rong-Hui Huang, 2015. "Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    6. Yiing Jang Yang & Ming-Huei Chang & Chia-Ying Hsieh & Hung-I Chang & Sen Jan & Ching-Ling Wei, 2019. "The role of enhanced velocity shears in rapid ocean cooling during Super Typhoon Nepartak 2016," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. John R. Lanzante, 2019. "Uncertainties in tropical-cyclone translation speed," Nature, Nature, vol. 570(7759), pages 6-15, June.
    8. Il-Ju Moon & Sung-Hun Kim & Johnny C. L. Chan, 2019. "Climate change and tropical cyclone trend," Nature, Nature, vol. 570(7759), pages 3-5, June.
    9. James P. Kossin, 2018. "A global slowdown of tropical-cyclone translation speed," Nature, Nature, vol. 558(7708), pages 104-107, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangbo Feng & Nicholas P. Klingaman & Kevin I. Hodges, 2021. "Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Iam-Fei Pun & Johnny C. L. Chan & I.-I. Lin & Kelvin T. F. Chan & James F. Price & Dong Shan Ko & Chun-Chi Lien & Yu-Lun Wu & Hsiao-Ching Huang, 2019. "Rapid Intensification of Typhoon Hato (2017) over Shallow Water," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    3. Jian Shi & Xiangbo Feng & Ralf Toumi & Chi Zhang & Kevin I. Hodges & Aifeng Tao & Wei Zhang & Jinhai Zheng, 2024. "Global increase in tropical cyclone ocean surface waves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    5. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    6. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    7. Kumar Ravi Prakash & Tanuja Nigam & Vimlesh Pant & Navin Chandra, 2021. "On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1981-2001, April.
    8. Edwin A. Hernández-Delgado & Pedro Alejandro-Camis & Gerardo Cabrera-Beauchamp & Jaime S. Fonseca-Miranda & Nicolás X. Gómez-Andújar & Pedro Gómez & Roger Guzmán-Rodríguez & Iván Olivo-Maldonado & Sam, 2024. "Stronger Hurricanes and Climate Change in the Caribbean Sea: Threats to the Sustainability of Endangered Coral Species," Sustainability, MDPI, vol. 16(4), pages 1-62, February.
    9. Atul Kumar Varma & Neeru Jaiswal & Ayan Das & Mukesh Kumar & Nikhil V. Lele & Rojalin Tripathy & Saroj Maity & Mehul Pandya & Bimal Bhattacharya & Anup Kumar Mandal & M. Jishad & M. Seemanth & Arvind , 2023. "A pathway for multi-stage cyclone-induced hazard tracking—case study for Yaas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 1035-1067, May.
    10. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Chin‐Hsien Yu & Bruce A. McCarl & Jian‐Da Zhu, 2022. "Market response to typhoons: The role of information and expectations," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 496-521, October.
    12. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    13. David Bacon & Nash′at Ahmad & Thomas Dunn & S. Gopalakrishnan & Mary Hall & Ananthakrishna Sarma, 2007. "Hurricane track forecasting with OMEGA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 457-470, June.
    14. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    15. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    16. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Mallucci, Enrico, 2022. "Natural disasters, climate change, and sovereign risk," Journal of International Economics, Elsevier, vol. 139(C).
    18. Reza Marsooli & Ning Lin, 2020. "Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York," Climatic Change, Springer, vol. 163(4), pages 2153-2171, December.
    19. Ding-Rong Wu & Zhe-Wen Zheng & Ganesh Gopalakrishnan & Chung-Ru Ho & Quanan Zheng, 2021. "Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    20. Akbar Hossain Kanan & Francesco Pirotti & Mauro Masiero & Md Masudur Rahman, 2023. "Mapping inundation from sea level rise and its interaction with land cover in the Sundarbans mangrove forest," Climatic Change, Springer, vol. 176(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:3:p:939-:d:313567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.