IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3709-d246197.html
   My bibliography  Save this article

Rapid Intensification of Typhoon Hato (2017) over Shallow Water

Author

Listed:
  • Iam-Fei Pun

    (Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Taoyuan 32001, Taiwan)

  • Johnny C. L. Chan

    (Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, Hong Kong)

  • I.-I. Lin

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Kelvin T. F. Chan

    (School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China)

  • James F. Price

    (Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA)

  • Dong Shan Ko

    (Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS 39529, USA)

  • Chun-Chi Lien

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Yu-Lun Wu

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

  • Hsiao-Ching Huang

    (Department of Atmospheric Sciences, National Taiwan University, Taipei 10617, Taiwan)

Abstract

On 23 August, 2017, Typhoon Hato rapidly intensified by 10 kt within 3 h just prior to landfall in the city of Macau along the South China coast. Hato’s surface winds in excess of 50 m s −1 devastated the city, causing unprecedented damage and social impact. This study reveals that anomalously warm ocean conditions in the nearshore shallow water (depth < 30 m) likely played a key role in Hato’s fast intensification. In particular, cooling of the sea surface temperature (SST) generated by Hato at the critical landfall point was estimated to be only 0.1–0.5 °C. The results from both a simple ocean mixing scheme and full dynamical ocean model indicate that SST cooling was minimized in the shallow coastal waters due to a lack of cool water at depth. Given the nearly invariant SST in the coastal waters, we estimate a large amount of heat flux, i.e., 1.9k W m −2 , during the landfall period. Experiments indicate that in the absence of shallow bathymetry, and thus, if nominal cool water had been available for vertical mixing, the SST cooling would have been enhanced from 0.1 °C to 1.4 °C, and sea to air heat flux reduced by about a quarter. Numerical simulations with an atmospheric model suggest that the intensity of Hato was very sensitive to air-sea heat flux in the coastal region, indicating the critical importance of coastal ocean hydrography.

Suggested Citation

  • Iam-Fei Pun & Johnny C. L. Chan & I.-I. Lin & Kelvin T. F. Chan & James F. Price & Dong Shan Ko & Chun-Chi Lien & Yu-Lun Wu & Hsiao-Ching Huang, 2019. "Rapid Intensification of Typhoon Hato (2017) over Shallow Water," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3709-:d:246197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Ying Lee & Michael K. Tippett & Adam H. Sobel & Suzana J. Camargo, 2016. "Rapid intensification and the bimodal distribution of tropical cyclone intensity," Nature Communications, Nature, vol. 7(1), pages 1-5, April.
    2. I-I Lin & Johnny C.L. Chan, 2015. "Recent decrease in typhoon destructive potential and global warming implications," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    3. Kerry A. Emanuel, 1999. "Thermodynamic control of hurricane intensity," Nature, Nature, vol. 401(6754), pages 665-669, October.
    4. Ping Huang & I. -I Lin & Chia Chou & Rong-Hui Huang, 2015. "Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    5. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    2. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    3. Yi Li & Youmin Tang & Shuai Wang & Ralf Toumi & Xiangzhou Song & Qiang Wang, 2023. "Recent increases in tropical cyclone rapid intensification events in global offshore regions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. David Bacon & Nash′at Ahmad & Thomas Dunn & S. Gopalakrishnan & Mary Hall & Ananthakrishna Sarma, 2007. "Hurricane track forecasting with OMEGA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 457-470, June.
    5. Eric Oliver & Jinyu Sheng & Keith Thompson & Jorge Blanco, 2012. "Extreme surface and near-bottom currents in the northwest Atlantic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1425-1446, November.
    6. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    7. Jing Xu & Ping Zhao & Johnny C. L. Chan & Mingyuan Shi & Chi Yang & Siyu Zhao & Ying Xu & Junming Chen & Ling Du & Jie Wu & Jiaxin Ye & Rui Xing & Huimei Wang & Lu Liu, 2024. "Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    9. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    10. Ding-Rong Wu & Zhe-Wen Zheng & Ganesh Gopalakrishnan & Chung-Ru Ho & Quanan Zheng, 2021. "Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    11. Vahid Valamanesh & Andrew T. Myers & Sanjay R. Arwade & Jerome F. Hajjar & Eric Hines & Weichiang Pang, 2016. "Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 541-562, August.
    12. V. Cardone & A. Cox, 2009. "Tropical cyclone wind field forcing for surge models: critical issues and sensitivities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 29-47, October.
    13. Thomas R. Knutson & Joseph J. Sirutis & Morris A. Bender & Robert E. Tuleya & Benjamin A. Schenkel, 2022. "Dynamical downscaling projections of late twenty-first-century U.S. landfalling hurricane activity," Climatic Change, Springer, vol. 171(3), pages 1-23, April.
    14. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    15. I.-I. Lin & Gustavo Goni & John Knaff & Cristina Forbes & M. Ali, 2013. "Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1481-1500, April.
    16. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    17. Chi-Sann Liou, 2007. "Sensitivity of high-resolution tropical cyclone intensity forecasts to surface flux parameterization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 387-399, June.
    18. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    19. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    20. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3709-:d:246197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.