IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp740-758.html
   My bibliography  Save this article

Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects

Author

Listed:
  • Wang, H.
  • Ke, S.T.
  • Wang, T.G.
  • Zhu, S.Y.

Abstract

The typhoon-induced vibration characteristics of large wind turbines are significantly different in different travelling stages of typhoons due to the structural complexity of typhoons. Influences of multi-stage typhoon-induced effects on structural safety of wind turbines have not been studied yet. The objective of this paper is to investigate the vibration characteristics of wind turbines in different stages of the typhoon as well as the influencing rules of the structural design standards. For this purpose, a framework was established for predicting multi-stage typhoon-induced effects of large wind turbines, which includes a new typhoon-induced multi-stage wind field simulation method and an advanced multi-body model for large wind turbines. On this basis, aerodynamic loads and dynamic response of large wind turbines during different travelling stages of typhoon were analyzed systematically based on the blade element momentum, multi-body dynamic methods, spectral analysis and data statistics. The working mechanisms of multi-stage effects on vibration characteristics of the large wind turbine were revealed. Finally, an evaluation method of vibration amplification effects for large wind turbines with considerations to multi-stage effects was established. Research results demonstrate that the proposed method can predict vibration characteristics of large wind turbines considering the multi-stage effects efficiently. The multi-stage typhoon-induced effects can influence the value of peak factor and the extremum of wind-induced force and vibration responses of large wind turbines significantly. Conversely, the wind vibration coefficient of structural design was affected slightly. Instead of using a uniform structural design standard for large wind turbines, the influence rule of multi-stage effects on anti-typhoon safety performance was summarized in this paper.

Suggested Citation

  • Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:740-758
    DOI: 10.1016/j.renene.2020.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mo, Wenwei & Li, Deyuan & Wang, Xianneng & Zhong, Cantang, 2015. "Aeroelastic coupling analysis of the flexible blade of a wind turbine," Energy, Elsevier, vol. 89(C), pages 1001-1009.
    2. Zhao, Xueyong & Maißer, Peter & Wu, Jingyan, 2007. "A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element," Renewable Energy, Elsevier, vol. 32(3), pages 532-546.
    3. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yisu & Wu, Di & Yu, Yuguo & Gao, Wei, 2021. "Do cyclone impacts really matter for the long-term performance of an offshore wind turbine?," Renewable Energy, Elsevier, vol. 178(C), pages 184-201.
    2. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    3. Wang, H. & Ke, S.T. & Wang, T.G. & Kareem, A. & Hu, L. & Ge, Y.J., 2022. "Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model," Renewable Energy, Elsevier, vol. 188(C), pages 765-777.
    4. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    5. Cai, Chang & Yang, Yingjian & Jia, Yan & Wu, Guangxing & Zhang, Hairui & Yuan, Feiqi & Qian, Quan & Li, Qing'an, 2023. "Aerodynamic load evaluation of leading edge and trailing edge windward states of large-scale wind turbine blade under parked condition," Applied Energy, Elsevier, vol. 350(C).
    6. Kangqi Tian & Li Song & Yongyan Chen & Xiaofeng Jiao & Rui Feng & Rui Tian, 2022. "Stress Coupling Analysis and Failure Damage Evaluation of Wind Turbine Blades during Strong Winds," Energies, MDPI, vol. 15(4), pages 1-19, February.
    7. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    8. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jin & Zhang, Lei & Li, Xue & Li, Shuang & Yang, Ke, 2020. "A study of dynamic response of a wind turbine blade based on the multi-body dynamics method," Renewable Energy, Elsevier, vol. 155(C), pages 358-368.
    2. Tang, Di & Bao, Shiyi & Luo, Lijia & Mao, Jianfeng & Lv, Binbin & Guo, Hongtao, 2017. "Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method," Energy, Elsevier, vol. 141(C), pages 2300-2313.
    3. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    4. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    5. Chen, Bei & Hua, Xugang & Zhang, Zili & Nielsen, Søren R.K. & Chen, Zhengqing, 2021. "Active flutter control of the wind turbines using double-pitched blades," Renewable Energy, Elsevier, vol. 163(C), pages 2081-2097.
    6. Eric Oliver & Jinyu Sheng & Keith Thompson & Jorge Blanco, 2012. "Extreme surface and near-bottom currents in the northwest Atlantic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1425-1446, November.
    7. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    8. Chen, Peng & Han, Dezhi, 2022. "Effective wind speed estimation study of the wind turbine based on deep learning," Energy, Elsevier, vol. 247(C).
    9. Shukla, Vivek & Kaviti, Ajay Kumar, 2017. "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, Elsevier, vol. 126(C), pages 766-795.
    10. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    11. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    12. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    13. Vahid Valamanesh & Andrew T. Myers & Sanjay R. Arwade & Jerome F. Hajjar & Eric Hines & Weichiang Pang, 2016. "Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 541-562, August.
    14. V. Cardone & A. Cox, 2009. "Tropical cyclone wind field forcing for surge models: critical issues and sensitivities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 29-47, October.
    15. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    16. Chi-Sann Liou, 2007. "Sensitivity of high-resolution tropical cyclone intensity forecasts to surface flux parameterization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 387-399, June.
    17. Ju, Shen-Haw & Huang, Yu-Cheng & Huang, Yin-Yu, 2020. "Study of optimal large-scale offshore wind turbines," Renewable Energy, Elsevier, vol. 154(C), pages 161-174.
    18. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.
    19. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    20. Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:740-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.