IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i2d10.1007_s11069-018-3340-x.html
   My bibliography  Save this article

Parametric modeling of tropical cyclone wind fields in India

Author

Listed:
  • Yashvant Das

    (Verisk Analytics India Private Limited)

Abstract

Convective activity such as tropical cyclone (TC) governed by geophysical fluid dynamics is among the most devastating natural disasters known to human society. Modeling TC wind field is of specific importance for the engineering, climatological and insurance point of view. The present study discusses the development of tropical cyclone wind fields based on the most commonly used gradient wind model of Holland. The model creates a two-dimensional surface wind field using the best track information on cyclone characteristics as input parameter from India Meteorological Department. A total of five significant historical storms making landfall along the east and west coast of Indian subcontinent are considered for the case study. Modeled winds are calibrated and validated against the anemometer observations. Model sensitivity to varying Holland’s parameter (B) and peripheral pressure (Pn) is also elucidated. Comparisons of modeled winds with observations show good agreement indicating the capability of model for the application of hazard assessment and risk management.

Suggested Citation

  • Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3340-x
    DOI: 10.1007/s11069-018-3340-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3340-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3340-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Dube & Indu Jain & A. Rao & T. Murty, 2009. "Storm surge modelling for the Bay of Bengal and Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 3-27, October.
    2. Kelin Hu & Qin Chen & Patrick FitzPatrick, 2012. "Assessment of a Parametric Hurricane Surface Wind Model for Tropical Cyclones in the Gulf of Mexico," Chapters, in: Kieran Richard Hickey (ed.), Advances in Hurricane Research - Modelling, Meteorology, Preparedness and Impacts, IntechOpen.
    3. U. Mohanty & M. Mandal & S. Raman, 2004. "Simulation of Orissa Super Cyclone (1999) using PSU/NCAR Mesoscale Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 373-390, February.
    4. Mark D. Powell & Peter J. Vickery & Timothy A. Reinhold, 2003. "Reduced drag coefficient for high wind speeds in tropical cyclones," Nature, Nature, vol. 422(6929), pages 279-283, March.
    5. M. Mohapatra & G. Mandal & B. Bandyopadhyay & Ajit Tyagi & U. Mohanty, 2012. "Classification of cyclone hazard prone districts of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1601-1620, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaikang Zhao & Ziwei Liu & Xiaoran Wei & Bo Li & Yefei Bai, 2021. "Intercomparison of Empirical Formulations of Maximum Wind Radius in Parametric Tropical Storm Modeling over Zhoushan Archipelago," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    2. Zhicheng Shen & Xinliang Xu & Jiahao Li & Shikuan Wang, 2019. "Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean," Sustainability, MDPI, vol. 11(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. D. Rao & Puja Upadhaya & Smita Pandey & Jismy Poulose, 2020. "Simulation of extreme water levels in response to tropical cyclones along the Indian coast: a climate change perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 151-172, January.
    2. Raghu Nadimpalli & Krishna K. Osuri & Sujata Pattanayak & U. C. Mohanty & M. M. Nageswararao & S. Kiran Prasad, 2016. "Real-time prediction of movement, intensity and storm surge of very severe cyclonic storm Hudhud over Bay of Bengal using high-resolution dynamical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1771-1795, April.
    3. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    4. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    5. B. Sindhu & A. Unnikrishnan, 2012. "Return period estimates of extreme sea level along the east coast of India from numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1007-1028, April.
    6. Eric Oliver & Jinyu Sheng & Keith Thompson & Jorge Blanco, 2012. "Extreme surface and near-bottom currents in the northwest Atlantic," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1425-1446, November.
    7. Pritam Ghosh & Asraful Alam & Nilanjana Ghosal & Debodatta Saha, 2021. "A Geospatial Analysis of Temporary Housing Inequality among Socially Marginalized and Privileged Groups in India," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 798-819, June.
    8. Usha Natesan & P. Rajalakshmi & M. Ramana Murthy & Vincent Ferrer, 2013. "Estimation of wave heights during cyclonic conditions using wave propagation model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1751-1766, December.
    9. Adam Bechle & Chin Wu, 2014. "The Lake Michigan meteotsunamis of 1954 revisited," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 155-177, October.
    10. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    11. Vahid Valamanesh & Andrew T. Myers & Sanjay R. Arwade & Jerome F. Hajjar & Eric Hines & Weichiang Pang, 2016. "Wind-wave prediction equations for probabilistic offshore hurricane hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 541-562, August.
    12. V. Cardone & A. Cox, 2009. "Tropical cyclone wind field forcing for surge models: critical issues and sensitivities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 29-47, October.
    13. S. Niggol Seo, 2017. "Measuring Policy Benefits Of The Cyclone Shelter Program In The North Indian Ocean: Protection From Intense Winds Or High Storm Surges?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-18, November.
    14. Jian Yang & Yu Chen & Hua Zhou & Zhongdong Duan, 2021. "A height-resolving tropical cyclone boundary layer model with vertical advection process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 723-749, May.
    15. Xue Jin & Xiaoxia Shi & Jintian Gao & Tongbin Xu & Kedong Yin, 2018. "Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups," IJERPH, MDPI, vol. 15(4), pages 1-19, March.
    16. Indrajit Ghosh & Sukhen Das & Nabajit Chakravarty, 2022. "Anomaly temperature in the genesis of tropical cyclone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1477-1503, November.
    17. Wang, H. & Ke, S.T. & Wang, T.G. & Zhu, S.Y., 2020. "Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects," Renewable Energy, Elsevier, vol. 153(C), pages 740-758.
    18. Chi-Sann Liou, 2007. "Sensitivity of high-resolution tropical cyclone intensity forecasts to surface flux parameterization," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 387-399, June.
    19. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    20. Sanjib Deb & C. Kishtawal & V. Bongirwar & P. Pal, 2010. "The simulation of heavy rainfall episode over Mumbai: impact of horizontal resolutions and cumulus parameterization schemes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 117-142, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3340-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.