IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v07y2016i03ns2010007816500081.html
   My bibliography  Save this article

Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh

Author

Listed:
  • M. MEHEDI HASAN

    (Department of Economics, University of Rajshahi, Rajshahi 6205, Bangladesh)

  • Md. ABDUR RASHID SARKER

    (Department of Economics, University of Rajshahi, Rajshahi 6205, Bangladesh)

  • JEFF GOW

    (#x2020;School of Commerce, University of Southern Queensland, Toowoomba, QLD 4350, Australia‡Department of Agricultural Economics, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

Despite substantial volumes of research on the impacts of climate change on rice productivity little attention has been paid in evaluating how these impacts differ between traditional varieties (TVs) and high yielding varieties (HYVs). In this study, Aman and Boro rice yields are examined, as respective examples. Cross-sectional time series data over 41 years for four climatic regions of Bangladesh has been used to explore this issue. Each region was examined individually and then across region comparisons were made to try to understand the impacts of major climate variables: average temperature, temperature range, and seasonal rainfall. Using both linear regression and panel data regression models, the major findings are that HYVs for both Aman and Boro rice varieties have less capacity to cope with changing climate conditions in contrast to TVs. Therefore, government should help to promote research and development aimed at developing more climate tolerant varieties, particularly temperature tolerant HYVs which have the potential to solidify the country’s food security situation at least in terms of food availability.

Suggested Citation

  • M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
  • Handle: RePEc:wsi:ccexxx:v:07:y:2016:i:03:n:s2010007816500081
    DOI: 10.1142/S2010007816500081
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007816500081
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007816500081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Man-Keun & Pang, Arwin, 2009. "Climate Change Impact on Rice Yield and Production Risk," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 32(2), pages 1-13, June.
    2. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    3. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    4. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    5. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    6. Onil Banerjee & Moogdho Mahzab & Selim Raihan & Nabiul Islam, 2015. "An Economy-Wide Analysis Of Climate Change Impacts On Agriculture And Food Security In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-17.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    9. Kabubo-Mariara, Jane & Karanja, Fredrick K, 2007. "The economic impact of climate change on Kenyan crop agriculture : a ricardian approach," Policy Research Working Paper Series 4334, The World Bank.
    10. Phillips, Donald L. & Lee, Jeffrey J. & Dodson, Rusty F., 1996. "Sensitivity of the US corn belt to climate change and elevated CO2: I. Corn and soybean yields," Agricultural Systems, Elsevier, vol. 52(4), pages 481-502, December.
    11. D Maddison, 2000. "A hedonic analysis of agricultural land prices in England and Wales," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(4), pages 519-532, December.
    12. Kazi Iqbal & Paritosh K. Roy, 2015. "Climate Change, Agriculture And Migration: Evidence From Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-31.
    13. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    14. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    15. Amireeta Rawlani & Benjamin Sovacool, 2011. "Building responsiveness to climate change through community based adaptation in Bangladesh," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(8), pages 845-863, December.
    16. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    17. Lee, Jeffrey J. & Phillips, Donald L. & Dodson, Rusty F., 1996. "Sensitivity of the US corn belt to climate change and elevated CO2: II. Soil erosion and organic carbon," Agricultural Systems, Elsevier, vol. 52(4), pages 503-521, December.
    18. World Bank, 2010. "World Development Report 2010," World Bank Publications - Books, The World Bank Group, number 4387, December.
    19. Robert Mendelsohn, 2012. "The Economics Of Adaptation To Climate Change In Developing Countries," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-21.
    20. Md. Abdur Rashid Sarker & Khorshed Alam & Jeff Gow, 2014. "Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 405-416.
    21. Molua, Ernest L., 2002. "Climate variability, vulnerability and effectiveness of farm-level adaptation options: the challenges and implications for food security in Southwestern Cameroon," Environment and Development Economics, Cambridge University Press, vol. 7(3), pages 529-545, July.
    22. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    23. Jinxia Wang & Robert Mendelsohn & Ariel Dinar & Jikun Huang & Scott Rozelle & Lijuan Zhang, 2009. "The impact of climate change on China's agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 323-337, May.
    24. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    25. Peter B. R. Hazell, 1984. "Sources of Increased Instability in Indian and U.S. Cereal Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(3), pages 302-311.
    26. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    27. Alauddin, Mohammad & Sarker, Md Abdur Rashid, 2014. "Climate change and farm-level adaptation decisions and strategies in drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation," Ecological Economics, Elsevier, vol. 106(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khadiya Aktar Maya & Md. Abdur Rashid Sarker & Jeff Gow, 2019. "Factors Influencing Rice Farmers’ Adaptation Strategies To Climate Change And Extreme Weather Event Impacts In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-18, August.
    2. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    3. Ruixue Wang & Roderick M. Rejesus & Jesse B. Tack & Joseph V. Balagtas & Andy D. Nelson, 2022. "Quantifying the Yield Sensitivity of Modern Rice Varieties to Warming Temperatures: Evidence from the Philippines," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 318-339, January.
    4. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    5. M. Mehedi Hasan & Mohammad Alauddin & Md. Abdur Rashid Sarker & Mohammad Jakaria & Mahiuddin Alamgir, 2018. "Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)," Discussion Papers Series 599, School of Economics, University of Queensland, Australia.
    6. Rebeka Sultana Supti & Rokeya Begum, 2024. "Profitability of Transplanted Aman rice cultivation in some selected areas of the southern part of Bangladesh," International Journal of Science and Business, IJSAB International, vol. 33(1), pages 95-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    2. Raju Guntukula & Phanindra Goyari, 2020. "Climate Change Effects on the Crop Yield and Its Variability in Telangana, India," Studies in Microeconomics, , vol. 8(1), pages 119-148, June.
    3. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    4. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    5. Byela Tibesigwa & Martine Visser & Jane Turpie, 2017. "Climate change and South Africa’s commercial farms: an assessment of impacts on specialised horticulture, crop, livestock and mixed farming systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(2), pages 607-636, April.
    6. V. Saravanakumar, "undated". "Impact of Climate Change on Yield of Major Food Crops in Tamil Nadu, India," Working papers 91, The South Asian Network for Development and Environmental Economics.
    7. M. Mehedi Hasan & Mohammad Alauddin & Md. Abdur Rashid Sarker & Mohammad Jakaria & Mahiuddin Alamgir, 2018. "Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)," Discussion Papers Series 599, School of Economics, University of Queensland, Australia.
    8. Shahbaz Bhatti & Sarfraz Hassan & Khalid Mushtaq & Kamran Javed, 2020. "Investigation The Impact Of Climate Change On Productivity Of Cotton: Empirical Evidence From Cotton Zone," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 1-4, February.
    9. Hasan, M. Mehedi & Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Jakaria, Mohammad & Alamgir, Mahiuddin, 2019. "Climate sensitivity of wheat yield in Bangladesh: Implications for the United Nations sustainable development goals 2 and 6," Land Use Policy, Elsevier, vol. 87(C).
    10. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    11. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    12. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    13. Nath, Hiranya K. & Mandal, Raju, 2018. "Heterogeneous Climatic Impacts on Agricultural Production: Evidence from Rice Yield in Assam, India," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 15(1), June.
    14. Catherine Benjamin & Ewen Gallic, 2017. "Effects of Climate Change on Agriculture: a European case study," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 2017-16, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
    15. Saumya Verma & Shreekant Gupta & Partha Sen, 2020. "Does climate change make foodgrain yields more unpredictable? Evidence from India," Working papers 305, Centre for Development Economics, Delhi School of Economics.
    16. Raju Mandal & Hiranya Nath, 2017. "Climate Change and indian Agriculture: Impacts on Crop Yield," Working Papers 1705, Sam Houston State University, Department of Economics and International Business.
    17. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    18. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    19. Basurto, Saul, 2016. "A Mexican Ricardian analysis: land rental prices or net revenues?," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236362, Agricultural Economics Society.
    20. Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:07:y:2016:i:03:n:s2010007816500081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.