IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v42y2022i10p1987-2017.html
   My bibliography  Save this article

The role of textual analysis in oil futures price forecasting based on machine learning approach

Author

Listed:
  • Xu Gong
  • Keqin Guan
  • Qiyang Chen

Abstract

This paper offers an innovative approach to capture the trend of oil futures prices based on the text‐based news. By adopting natural language processing techniques, the text features obtained from online oil news catch more hidden information, improving the forecasting accuracy of oil futures prices. We find that the textual features are complementary in improving forecasting performance, both for LightGBM and benchmark models. Besides, event studies verify the asymmetric impact of positive and negative emotional shocks on oil futures prices. The generated text‐based news features robustly reduce forecasting errors, and the reduction can be maximized by incorporating all features.

Suggested Citation

  • Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
  • Handle: RePEc:wly:jfutmk:v:42:y:2022:i:10:p:1987-2017
    DOI: 10.1002/fut.22367
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22367
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frijns, Bart & Huynh, Thanh D., 2018. "Herding in analysts’ recommendations: The role of media," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 1-18.
    2. Gao, Lei & Han, Yufeng & Zhengzi Li, Sophia & Zhou, Guofu, 2018. "Market intraday momentum," Journal of Financial Economics, Elsevier, vol. 129(2), pages 394-414.
    3. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    4. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    5. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    6. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    7. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
    8. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    9. Ling Tang & Wei Dai & Lean Yu & Shouyang Wang, 2015. "A Novel CEEMD-Based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 141-169.
    10. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    11. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    12. Zhengke Ye, Chunyan Hu, Linjie He, Guangda Ouyang, and Fenghua Wen, 2020. "The Dynamic Time-frequency Relationship between International Oil Prices and Investor Sentiment in China: A Wavelet Coherence Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 251-270.
    13. Ron Alquist & Reinhard Ellwanger & Jianjian Jin, 2020. "The effect of oil price shocks on asset markets: Evidence from oil inventory news," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(8), pages 1212-1230, August.
    14. Chiew, Ernest & Choong, Shin Siang, 2022. "A solution for M5 Forecasting - Uncertainty: Hybrid gradient boosting and autoregressive recurrent neural network for quantile estimation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1442-1447.
    15. Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
    16. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    17. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    18. Lean Yu & Yang Zhao & Ling Tang, 2017. "Ensemble Forecasting for Complex Time Series Using Sparse Representation and Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(2), pages 122-138, March.
    19. Yukun Liu & Ben Matthies, 2022. "Long‐Run Risk: Is It There?," Journal of Finance, American Finance Association, vol. 77(3), pages 1587-1633, June.
    20. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    21. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    22. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    23. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    24. Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
    25. Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
    26. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    27. Yun Bai & Xixi Li & Hao Yu & Suling Jia, 2020. "Crude oil price forecasting incorporating news text," Papers 2002.02010, arXiv.org, revised Jul 2021.
    28. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    29. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    30. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    31. Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
    32. Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020. "A New Index of Housing Sentiment," Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
    33. Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
    34. Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
    35. Jian Li & Zhenjing Xu & Huijuan Xu & Ling Tang & Lean Yu, 2017. "Forecasting Oil Price Trends with Sentiment of Online News Articles," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(02), pages 1-22, April.
    36. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    37. Li, Yelin & Bu, Hui & Li, Jiahong & Wu, Junjie, 2020. "The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1541-1562.
    38. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    39. Gong, Xu & Guan, Keqin & Chen, Liqing & Liu, Tangyong & Fu, Chengbo, 2021. "What drives oil prices? — A Markov switching VAR approach," Resources Policy, Elsevier, vol. 74(C).
    40. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
    41. Jia Zhai & Yi Cao & Xiaoquan Liu, 2020. "A neural network enhanced volatility component model," Quantitative Finance, Taylor & Francis Journals, vol. 20(5), pages 783-797, May.
    42. I-Hsuan Ethan Chiang & W. Keener Hughen & Jacob S. Sagi, 2015. "Estimating Oil Risk Factors Using Information from Equity and Derivatives Markets," Journal of Finance, American Finance Association, vol. 70(2), pages 769-804, April.
    43. Clerides, Sofronis & Krokida, Styliani-Iris & Lambertides, Neophytos & Tsouknidis, Dimitris, 2022. "What matters for consumer sentiment in the euro area? World crude oil price or retail gasoline price?," Energy Economics, Elsevier, vol. 105(C).
    44. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    45. Yang Liu & Liyan Han & Libo Yin, 2018. "Does news uncertainty matter for commodity futures markets? Heterogeneity in energy and non‐energy sectors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1246-1261, October.
    46. Oliver Entrop & Bart Frijns & Marco Seruset, 2020. "The determinants of price discovery on bitcoin markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 816-837, May.
    47. Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
    48. A. Craig MacKinlay, 1997. "Event Studies in Economics and Finance," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 13-39, March.
    49. J. Anthony Cookson & Marina Niessner, 2020. "Why Don't We Agree? Evidence from a Social Network of Investors," Journal of Finance, American Finance Association, vol. 75(1), pages 173-228, February.
    50. Chen Gu & Denghui Chen & Raluca Stan, 2021. "Investor sentiment and the market reaction to macroeconomic news," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1412-1426, September.
    51. Adam E. Clements & Neda Todorova, 2016. "Information Flow, Trading Activity and Commodity Futures Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(1), pages 88-104, January.
    52. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cheng & Bouri, Elie & Xu, Yahua & Zhang, Dingsheng, 2023. "Intraday and overnight tail risks and return predictability in the crude oil market: Evidence from oil-related regular news and extreme shocks," Energy Economics, Elsevier, vol. 127(PB).
    2. Wen, Fenghua & Chen, Meng & Zhang, Yun & Miao, Xiao, 2023. "Oil price uncertainty and audit fees: Evidence from the energy industry," Energy Economics, Elsevier, vol. 125(C).
    3. Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).
    4. Zhang, Xinhua & Zhang, Qianqian & Dai, Zhifeng & Zhang, Xiaotong, 2023. "The impact of carbon markets on the financial performance of power producers: Evidence based on China," Energy Economics, Elsevier, vol. 127(PA).
    5. Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
    6. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    7. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    8. Mário Correia Fernandes & José Carlos Dias & João Pedro Vidal Nunes, 2024. "Performance comparison of alternative stochastic volatility models and its determinants in energy futures: COVID‐19 and Russia–Ukraine conflict features," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 343-383, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Xu & Guan, Keqin & Chen, Liqing & Liu, Tangyong & Fu, Chengbo, 2021. "What drives oil prices? — A Markov switching VAR approach," Resources Policy, Elsevier, vol. 74(C).
    2. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    4. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    5. Zheng, Yan & Zhou, Min & Wen, Fenghua, 2021. "Asymmetric effects of oil shocks on carbon allowance price: Evidence from China," Energy Economics, Elsevier, vol. 97(C).
    6. Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
    7. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    8. Wu, Nan & Wen, Fenghua & Gong, Xu, 2022. "Marionettes behind co-movement of commodity prices: Roles of speculative and hedging activities," Energy Economics, Elsevier, vol. 115(C).
    9. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    10. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    11. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    12. Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
    13. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    14. Wu, Shue-Jen, 2023. "The role of the past long-run oil price changes in stock market," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 274-291.
    15. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    16. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    17. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2022. "Proxy SVAR identification of monetary policy shocks - Monte Carlo evidence and insights for the US," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    18. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    19. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    20. Nan, Yu & Sun, Renjin & Zhen, Zhao & Fangjing, Chu, 2022. "Measurement of international crude oil price cyclical fluctuations and correlation with the world economic cyclical changes," Energy, Elsevier, vol. 260(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:42:y:2022:i:10:p:1987-2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.